Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Biochem Genet ; 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38407766

ABSTRACT

Bardet-Biedl syndrome (BBS) is a rare inherited ciliopathy disorder characterized by a broad spectrum of clinical symptoms such as retinal dystrophy, obesity, polydactyly, genitourinary and kidney anomalies, learning disability, and hypogonadism. The understanding of the variants involved in BBS-causing genes remains incomplete, highlighting the need for further research to develop a molecular diagnostic strategy for this syndrome. Singleton whole-exome sequencing (WES) was performed on sixteen patients. Our study revealed (1) nine patients carried eight homozygous pathogenic variants with four of them being novel (2) Specifically, a synonymous splicing variant (c.471G > A) in BBS2 gene in six patients with Baloch ethnicity. The identification of runs of homozygosity (ROH) calling was performed using the BCFtools/RoH software on WES data of patients harboring c.471G > A variant. The presence of shared homozygous regions containing the identified variant was confirmed in these patients. In-silico analysis predicted the effect of the c.471G > A variants on BBS2 mRNA splicing. This variant results in disrupted wild-type donor site and intron retention in the mature mRNA. (3) And a deletion of exons 14 to 17 in the BBS1 gene was identified in one patient by Copy-Number Variation (CNV) analysis using the ExomeDepth pipeline. Our results identified the founder variant c.471G > A in the BBS2 gene in the Baloch ethnicity of the Iranian population. This finding can guide the diagnostic approach of this syndrome in future studies.

2.
BMC Med Genomics ; 17(1): 24, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38238750

ABSTRACT

BACKGROUND: Polycystic ovarian syndrome (PCOS) is a common endocrine disorder that affects 6-20% of women of reproductive age. One of the symptoms of PCOS is hyperandrogenism, which can impair follicular development. This disruption can cause issues with the development of oocytes and the growth of embryos. Although the exact cause of PCOS is not yet fully understood, studying the gene expression pattern of cumulus cells, which play a crucial role in the maturation and quality of oocytes, could help identify the genes associated with oocyte maturation in PCOS women. Through indirect activation of APC/Cdc20, RBX1 enables oocytes to bypass the GV (germinal vesicles) stage and advance to the MII (metaphase II) stage. our other gene is the BAMBI gene which stimulates WNT signaling, that is a crucial pathway for healthy ovarian function. This study aims to explore the expression level of the RBX1 and BAMBI genes between GV and MII oocytes of PCOS and non-PCOS groups. METHODS: In this experiment, we gathered the cumulus cells of MII (38 cases and 33 control) and GV (38 cases and 33 control) oocytes from women with/without PCOS. Besides, quantitative RT-PCR was used to assess the semi-quantitative expression of BAMBI and RBX1. RESULTS: According to our research, the expression level of RBX1 and BAMBI in MII and GV cumulus cells of PCOS patients was significantly lower than that in non-PCOS ones. CONCLUSION: This research raises the possibility of RBX1 and BAMBI involvement in oocyte quality in PCOS women.


Subject(s)
Polycystic Ovary Syndrome , Humans , Female , Polycystic Ovary Syndrome/genetics , Oogenesis/physiology , Oocytes/metabolism , Gene Expression , Carrier Proteins/metabolism , Membrane Proteins/metabolism
3.
bioRxiv ; 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38260472

ABSTRACT

Many neurodevelopmental defects are linked to perturbations in genes involved in housekeeping functions, such as those encoding ribosome biogenesis factors. However, how reductions in ribosome biogenesis can result in tissue and developmental specific defects remains a mystery. Here we describe new allelic variants in the ribosome biogenesis factor AIRIM primarily associated with neurodevelopmental disorders. Using human cerebral organoids in combination with proteomic analysis, single-cell transcriptome analysis across multiple developmental stages, and single organoid translatome analysis, we identify a previously unappreciated mechanism linking changes in ribosome levels and the timing of cell fate specification during early brain development. We find ribosome levels decrease during neuroepithelial differentiation, making differentiating cells particularly vulnerable to perturbations in ribosome biogenesis during this time. Reduced ribosome availability more profoundly impacts the translation of specific transcripts, disrupting both survival and cell fate commitment of transitioning neuroepithelia. Enhancing mTOR activity by both genetic and pharmacologic approaches ameliorates the growth and developmental defects associated with intellectual disability linked variants, identifying potential treatment options for specific brain ribosomopathies. This work reveals the cellular and molecular origins of protein synthesis defect-related disorders of human brain development. Highlights: AIRIM variants reduce ribosome levels specifically in neural progenitor cells. Inappropriately low ribosome levels cause a transient delay in radial glia fate commitment.Reduced ribosome levels impair translation of a selected subset of mRNAs.Genetic and pharmacologic activation of mTORC1 suppresses AIRIM-linked phenotypes.

5.
Eur J Obstet Gynecol Reprod Biol ; 277: 12-15, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35970002

ABSTRACT

BACKGROUND: Endometriosis is a common gynecological condition with a substantial economic burden on society. It is known that both genetic and environmental factors are contributing to the phenotypic development of the disease. MicroRNAs have a vital role in the pathogenesis of endometriosis. miR-1271 and its direct target gene, GRB2 (growth factor receptor-bound protein 2), expression have been studied in gynecologic cancers, while their role in endometriosis has not been studied. OBJECTIVE: We measured miR-1271 and GRB2 gene expression in the eutopic and ectopic tissues of patients (endometrial tissues) in contrast to the control samples from healthy women. MATERIALS AND METHODS: In this study, a total of 45 samples (15 control samples, 15 eutopic samples and 15 ectopic samples) were collected. We used qRT-PCR (quantitative polymerase chain reaction) to evaluate the expression levels of the miR-1271 and GRB2 gene. RESULTS: We observed inverse expression of miR-1271 and GRB2 gene. MiR-1271 expression was significantly reduced in patients with endometriosis compared with healthy women. While there was a noticeable increase in the expression level of its target gene, GRB2, in tissues of endometriosis patients compared with normal control samples. CONCLUSION: We have shown an inverse relationship between the reduction of miR-1271 expression level and increase in the expression level of GRB2, therefore, increased GRB2 expression in endometriosis tissues can be due to decreased expression of this microRNA. Our findings suggested that miR-1271 maybe play a role as a biomarker in the diagnosis of patients with endometriosis.


Subject(s)
Endometriosis , GRB2 Adaptor Protein/genetics , MicroRNAs , Endometriosis/pathology , Endometrium/pathology , Female , GRB2 Adaptor Protein/metabolism , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Receptors, Growth Factor/metabolism
6.
Ann Clin Transl Neurol ; 9(9): 1465-1474, 2022 09.
Article in English | MEDLINE | ID: mdl-35869884

ABSTRACT

Ultra-rare biallelic pathogenic variants in geranylgeranyl diphosphate synthase 1 (GGPS1) have recently been associated with muscular dystrophy/hearing loss/ovarian insufficiency syndrome. Here, we describe 11 affected individuals from four unpublished families with ultra-rare missense variants in GGPS1 and provide follow-up details from a previously reported family. Our cohort replicated most of the previously described clinical features of GGPS1 deficiency; however, hearing loss was present in only 46% of the individuals. This report consolidates the disease-causing role of biallelic variants in GGPS1 and demonstrates that hearing loss and ovarian insufficiency might be a variable feature of the GGPS1-associated muscular dystrophy.


Subject(s)
Deafness , Dimethylallyltranstransferase , Hearing Loss , Muscular Dystrophies , Primary Ovarian Insufficiency , Dimethylallyltranstransferase/genetics , Farnesyltranstransferase/genetics , Female , Geranyltranstransferase/genetics , Hearing Loss/genetics , Humans , Muscular Dystrophies/genetics , Mutation, Missense
7.
Eur J Hum Genet ; 29(3): 411-421, 2021 03.
Article in English | MEDLINE | ID: mdl-33168985

ABSTRACT

Pontocerebellar hypoplasia (PCH) describes a group of rare heterogeneous neurodegenerative diseases with prenatal onset. Here we describe eight children with PCH from four unrelated families harboring the homozygous MINPP1 (NM_004897.4) variants; c.75_94del, p.(Leu27Argfs*39), c.851 C > A, p.(Ala284Asp), c.1210 C > T, p.(Arg404*), and c.992 T > G, p.(Ile331Ser). The homozygous p.(Leu27Argfs*39) change is predicted to result in a complete absence of MINPP1. The p.(Arg404*) would likely lead to a nonsense mediated decay, or alternatively, a loss of several secondary structure elements impairing protein folding. The missense p.(Ala284Asp) affects a buried, hydrophobic residue within the globular domain. The introduction of aspartic acid is energetically highly unfavorable and therefore predicted to cause a significant reduction in protein stability. The missense p.(Ile331Ser) affects the tight hydrophobic interactions of the isoleucine by the disruption of the polar side chain of serine, destabilizing the structure of MINPP1. The overlap of the above-mentioned genotypes and phenotypes is highly improbable by chance. MINPP1 is the only enzyme that hydrolyses inositol phosphates in the endoplasmic reticulum lumen and several studies support its role in stress induced apoptosis. The pathomechanism explaining the disease mechanism remains unknown, however several others genes of the inositol phosphatase metabolism (e.g., INPP5K, FIG4, INPP5E, ITPR1) are correlated with phenotypes of neurodevelopmental disorders. Taken together, we present MINPP1 as a novel autosomal recessive pontocerebellar hypoplasia gene.


Subject(s)
Cerebellar Diseases/genetics , Phosphoric Monoester Hydrolases/genetics , Alleles , Cerebellar Diseases/pathology , Child , Child, Preschool , Codon, Nonsense , Female , Homozygote , Humans , Infant , Male , Mutation, Missense , Protein Folding
8.
BMC Med Genet ; 21(1): 33, 2020 02 14.
Article in English | MEDLINE | ID: mdl-32059713

ABSTRACT

BACKGROUND: Tudor domain-containing proteins (TDRDs) play a critical role in piRNA biogenesis and germ cell development. piRNAs, small regulatory RNAs, act by silencing of transposons during germline development and it has recently been shown in animal model studies that defects in TDRD genes can lead to sterility in males. METHODS: Here we evaluate gene and protein expression levels of four key TDRDs (TDRD1, TDRD5, TDRD9 and TDRD12) in testicular biopsy samples obtained from men with obstructive azoospermia (OA, n = 29), as controls, and various types of non-obstructive azoospermia containing hypospermatogenesis (HP, 28), maturation arrest (MA, n = 30), and Sertoli cell-only syndrome (SCOS, n = 32) as cases. One-way ANOVA test followed by Dunnett's multiple comparison post-test was used to determine inter-group differences in TDRD gene expression among cases and controls. RESULTS: The results showed very low expression of TDRD genes in SCOS specimens. Also, the expression of TDRD1 and TDRD9 genes were lower in MA samples compared to OA samples. The expression of TDRD5 significantly reduced in SCOS, MA and HP specimens than the OA specimens. Indeed, TDRD12 exhibited a very low expression in HP specimens in comparison to OA specimens. All these results were confirmed by Western blot technique. CONCLUSION: TDRDs could be very important in male infertility, which should be express in certain stages of spermatogenesis.


Subject(s)
Azoospermia/genetics , Cell Cycle Proteins/genetics , DNA Helicases/genetics , Infertility, Male/genetics , Adult , Animals , Azoospermia/pathology , Gene Expression Regulation/genetics , Humans , Infertility, Male/pathology , Male , RNA, Small Interfering/genetics , Spermatogenesis/genetics , Testis/growth & development , Testis/metabolism , Testis/pathology
9.
Brain ; 142(6): 1547-1560, 2019 06 01.
Article in English | MEDLINE | ID: mdl-31081514

ABSTRACT

Next generation sequencing techniques were recently used to show mutations in COL13A1 cause synaptic basal lamina-associated congenital myasthenic syndrome type 19. Animal studies showed COL13A1, a synaptic extracellular-matrix protein, is involved in the formation and maintenance of the neuromuscular synapse that appears independent of the Agrin-LRP4-MuSK-DOK7 acetylcholine receptor clustering pathway. Here, we report the phenotypic spectrum of 16 patients from 11 kinships harbouring homozygous or heteroallelic mutations in COL13A1. Clinical presentation was mostly at birth with hypotonia and breathing and feeding difficulties often requiring ventilation and artificial feeding. Respiratory crisis related to recurrent apnoeas, sometimes triggered by chest infections, were common early in life but resolved over time. The predominant pattern of muscle weakness included bilateral ptosis (non-fatigable in adulthood), myopathic facies and marked axial weakness, especially of neck flexion, while limb muscles were less involved. Other features included facial dysmorphism, skeletal abnormalities and mild learning difficulties. All patients tested had results consistent with abnormal neuromuscular transmission. Muscle biopsies were within normal limits or showed non-specific changes. Muscle MRI and serum creatine kinase levels were normal. In keeping with COL13A1 mutations affecting both synaptic structure and presynaptic function, treatment with 3,4-diaminopyridine and salbutamol resulted in motor and respiratory function improvement. In non-treated cases, disease severity and muscle strength improved gradually over time and several adults recovered normal muscle strength in the limbs. In summary, patients with COL13A1 mutations present mostly with severe early-onset myasthenic syndrome with feeding and breathing difficulties. Axial weakness is greater than limb weakness. Disease course improves gradually over time, which could be consistent with the less prominent role of COL13A1 once the neuromuscular junction is mature. This report emphasizes the role of collagens at the human muscle endplate and should facilitate the recognition of this disorder, which can benefit from pharmacological treatment.


Subject(s)
Collagen Type XIII/genetics , Muscle Proteins/genetics , Myasthenic Syndromes, Congenital/genetics , Neuromuscular Junction/metabolism , Synaptic Transmission/genetics , Adolescent , Adult , Child , Female , Homozygote , Humans , Male , Muscle, Skeletal/pathology , Mutation/genetics , Myasthenic Syndromes, Congenital/diagnosis , Neuromuscular Junction/genetics , Synapses/genetics , Young Adult
10.
Neurol Sci ; 39(11): 1917-1925, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30128655

ABSTRACT

Biallelic mutations of the alsin Rho guanine nucleotide exchange factor (ALS2) gene cause a group of overlapping autosomal recessive neurodegenerative disorders including infantile-onset ascending hereditary spastic paralysis (IAHSP), juvenile primary lateral sclerosis (JPLS), and juvenile amyotrophic lateral sclerosis (JALS/ALS2), caused by retrograde degeneration of the upper motor neurons of the pyramidal tracts. Here, we describe 11 individuals with IAHSP, aged 2-48 years, with IAHSP from three unrelated consanguineous Iranian families carrying the homozygous c.1640+1G>A founder mutation in ALS2. Three affected siblings from one family exhibit generalized dystonia which has not been previously described in families with IAHSP and has only been reported in three unrelated consanguineous families with JALS/ALS2. We report the oldest individuals with IAHSP to date and provide evidence that these patients survive well into their late 40s with preserved cognition and normal eye movements. Our study delineates the phenotypic spectrum of IAHSP and ALS2-related disorders and provides valuable insights into the natural disease course.


Subject(s)
Family Health , Guanine Nucleotide Exchange Factors/genetics , Mutation/genetics , Spastic Paraplegia, Hereditary/genetics , Spastic Paraplegia, Hereditary/physiopathology , Adolescent , Adult , Child , Child, Preschool , DNA Mutational Analysis , Female , Humans , Iran , Male , Middle Aged , Young Adult
11.
Eur J Med Genet ; 61(8): 465-467, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29545012

ABSTRACT

Congenital Leptin receptor (LEPR) deficiency is a rare genetic cause of early-onset morbid obesity characterised by severe early onset obesity, major hyperphagia, hypogonadotropic hypogonadism and immune and neuroendocrine/metabolic dysfunction. We identified a homozygous loss-of-function mutation, NM_002303.5:c.464 T > G; p.(Tyr155*), in the LEPR in an extended consanguineous family with multiple individuals affected by early-onset severe obesity and hyperphagia. Interestingly, the LEPR-deficient adult females have extremely high body mass index (BMI) with hypogonadal infertility, the BMI of the affected males began to decline around the onset of puberty (13-15 years) with fertility being preserved. These findings lead to the speculation that LEPR deficiency may have a gender-specific effect on the regulation of body weight. In order to elucidate gender-specific effects of LEPR deficiency on reproduction further investigations are needed. The limitations of this study are that our conclusion is based on observations of two males and two females. Further LEPR deficient males and females are required for comparison in order to support this finding more confidently.


Subject(s)
Hyperphagia/genetics , Loss of Function Mutation , Obesity/genetics , Receptors, Leptin/genetics , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Hyperphagia/pathology , Male , Obesity/pathology , Pedigree , Sex Factors
12.
Genome Med ; 9(1): 118, 2017 12 22.
Article in English | MEDLINE | ID: mdl-29273094

ABSTRACT

BACKGROUND: The phenotypic severity of congenital muscular dystrophy-dystroglycanopathy (MDDG) syndromes associated with aberrant glycosylation of α-dystroglycan ranges from the severe Walker-Warburg syndrome or muscle-eye-brain disease to mild, late-onset, isolated limb-girdle muscular dystrophy without neural involvement. However, muscular dystrophy is invariably found across the spectrum of MDDG patients. METHODS: Using linkage mapping and whole-exome sequencing in two families with an unexplained neurodevelopmental disorder, we have identified homozygous and compound heterozygous mutations in B3GALNT2. RESULTS: The first family comprises two brothers of Dutch non-consanguineous parents presenting with mild ID and behavioral problems. Immunohistochemical analysis of muscle biopsy revealed no significant aberrations, in line with the absence of a muscular phenotype in the affected siblings. The second family includes five affected individuals from an Iranian consanguineous kindred with mild-to-moderate intellectual disability (ID) and epilepsy without any notable neuroimaging, muscle, or eye abnormalities. Complementation assays of the compound heterozygous mutations identified in the two brothers had a comparable effect on the O-glycosylation of α-dystroglycan as previously reported mutations that are associated with severe muscular phenotypes. CONCLUSIONS: In conclusion, we show that mutations in B3GALNT2 can give rise to a novel MDDG syndrome presentation, characterized by ID associated variably with seizure, but without any apparent muscular involvement. Importantly, B3GALNT2 activity does not fully correlate with the severity of the phenotype as assessed by the complementation assay.


Subject(s)
Intellectual Disability/genetics , Mutation , N-Acetylgalactosaminyltransferases/genetics , Phenotype , Walker-Warburg Syndrome/genetics , Adolescent , Adult , Cell Line , Child , Female , Genes, Recessive , Genotype , Humans , Intellectual Disability/pathology , Male , N-Acetylgalactosaminyltransferases/metabolism , Pedigree , Walker-Warburg Syndrome/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...