Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Mater ; 36(8): 3588-3603, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38681089

ABSTRACT

The development of nanoparticle (NP)-based drug carriers has presented an exciting opportunity to address challenges in oncology. Among the 100,000 available possibilities, zirconium-based metal-organic frameworks (MOFs) have emerged as promising candidates in biomedical applications. Zr-MOFs can be easily synthesized as small-size NPs compatible with intravenous injection, whereas the ease of decorating their external surfaces with functional groups allows for targeted treatment. Despite these benefits, Zr-MOFs suffer degradation and aggregation in real, in vivo conditions, whereas the loaded drugs will suffer the burst effect-i.e., the fast release of drugs in less than 48 h. To tackle these issues, we developed a simple but effective bilayer coating strategy in a generic, two-step process. In this work, bilayer-coated MOF NU-901 remained well dispersed in biologically relevant fluids such as buffers and cell growth media. Additionally, the coating enhances the long-term stability of drug-loaded MOFs in water by simultaneously preventing sustained leakage of the drug and aggregation of the MOF particles. We evaluated our materials for the encapsulation and transport of pemetrexed, the standard-of-care chemotherapy in mesothelioma. The bilayer coating allowed for a slowed release of pemetrexed over 7 days, superior to the typical 48 h release found in bare MOFs. This slow release and the related performance were studied in vitro using both A549 lung cancer and 3T mesothelioma cells. Using high-resolution microscopy, we found the successful uptake of bilayer-coated MOFs by the cells with an accumulation in the lysosomes. The pemetrex-loaded NU-901 was indeed cytotoxic to 3T and A549 cancer cells. Finally, we demonstrated the general approach by extending the coating strategy using two additional lipids and four surfactants. This research highlights how a simple yet effective bilayer coating provides new insights into the design of promising MOF-based drug delivery systems.

2.
ACS Catal ; 9(6): 4919-4929, 2019 Jun 07.
Article in English | MEDLINE | ID: mdl-32953238

ABSTRACT

The catalytic and structural properties of five different nanoparticle catalysts with varying Au/Ni composition were studied by six different methods, including in situ X-ray absorption spectroscopy and density functional theory (DFT) calculations. The as-prepared materials contained substantial amounts of residual capping agent arising from the commonly used synthetic procedure. Thorough removal of this material by oxidation was essential for the acquisition of valid catalytic data. All catalysts were highly selective toward N2 formation, with 50-50 Au:Ni material being best of all. In situ X-ray absorption near edge structure spectroscopy showed that although Au acted to moderate the oxidation state of Ni, there was no clear correlation between catalytic activity and nickel oxidation state. However, in situ extended X-ray absorption fine structure spectroscopy showed a good correlation between Au-Ni coordination number (highest for Ni50Au50) and catalytic activity. Importantly, these measurements also demonstrated substantial and reversible Au/Ni intermixing as a function of temperature between 550 °C (reaction temperature) and 150 °C, underlining the importance of in situ methods to the correct interpretation of reaction data. DFT calculations on smooth, stepped, monometallic and bimetallic surfaces showed that N + N recombination rather than NO dissociation was always rate-determining and that the activation barrier to recombination reaction decreased with increased Au content, thus accounting for the experimental observations. Across the entire composition range, the oxidation state of Ni did not correlate with activity, in disagreement with earlier work, and theory showed that NiO itself should be catalytically inert. Au-Ni interactions were of paramount importance in promoting N + N recombination, the rate-limiting step.

3.
J Am Chem Soc ; 139(22): 7522-7532, 2017 06 07.
Article in English | MEDLINE | ID: mdl-28508624

ABSTRACT

Utilizing metal-organic frameworks (MOFs) as a biological carrier can lower the amount of the active pharmaceutical ingredient (API) required in cancer treatments to provide a more efficacious therapy. In this work, we have developed a temperature treatment process for delaying the release of a model drug compound from the pores of NU-1000 and NU-901, while taking care to utilize these MOFs' large pore volume and size to achieve exceptional model drug loading percentages over 35 wt %. Video-rate super-resolution microscopy reveals movement of MOF particles when located outside of the cell boundary, and their subsequent immobilization when taken up by the cell. Through the use of optical sectioning structured illumination microscopy (SIM), we have captured high-resolution 3D images showing MOF uptake by HeLa cells over a 24 h period. We found that addition of a model drug compound into the MOF and the subsequent temperature treatment process does not affect the rate of MOF uptake by the cell. Endocytosis analysis revealed that MOFs are internalized by active transport and that inhibiting the caveolae-mediated pathway significantly reduced cellular uptake of MOFs. Encapsulation of an anticancer therapeutic, alpha-cyano-4-hydroxycinnamic acid (α-CHC), and subsequent temperature treatment produced loadings of up to 81 wt % and demonstrated efficacy at killing cells beyond the burst release effect.


Subject(s)
Drug Delivery Systems , Metal-Organic Frameworks/chemistry , Zirconium/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Drug Liberation , HeLa Cells , Humans , Microscopy, Electron, Scanning , Porosity , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL