Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
J Allergy Clin Immunol Glob ; 3(2): 100244, 2024 May.
Article in English | MEDLINE | ID: mdl-38577482

ABSTRACT

A case report detailing, for the first time, a case of laboratory-confirmed zoster in an astronaut on board the International Space Station is presented. The findings of reduced T-cell function, cytokine imbalance, and increased stress hormones which preceded the event are detailed. Relevance for deep space countermeasures is discussed.

2.
Life Sci Space Res (Amst) ; 40: 151-157, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38245340

ABSTRACT

Astronauts are known to exhibit a variety of immunological alterations during spaceflight including changes in leukocyte distribution and plasma cytokine concentrations, a reduction in T-cell function, and subclinical reactivation of latent herpesviruses. These alterations are most likely due to mission-associated stressors including circadian misalignment, microgravity, isolation, altered nutrition, and increased exposure to cosmic radiation. Some of these stressors may also occur in terrestrial situations. This study sought to determine if crewmembers performing winterover deployment at Palmer Station, Antarctica, displayed similar immune alterations. The larger goal was to validate a ground analog suitable for the evaluation of countermeasures designed to protect astronauts during future deep space missions. For this pilot study, plasma, saliva, hair, and health surveys were collected from Palmer Station, Antarctica, winterover participants at baseline, and at five winterover timepoints. Twenty-six subjects consented to participate over the course of two seasons. Initial sample processing was performed at Palmer, and eventually stabilized samples were returned to the Johnson Space Center for analysis. A white blood cell differential was performed (real time) using a fingerstick blood sample to determine alterations in basic leukocyte subsets throughout the winterover. Plasma and saliva samples were analyzed for 30 and 13 cytokines, respectively. Saliva was analyzed for cortisol concentration and three latent herpesviruses (DNA by qPCR), EBV, HSV1, and VZV. Voluntary surveys related to general health and adverse clinical events were distributed to participants. It is noteworthy that due to logistical constraints caused by COVID-19, the baseline samples for each season were collected in Punta Arenas, Chile, after long international travel and during isolation. Therefore, the Palmer pre-mission samples may not reflect a true normal 'baseline'. Minimal alterations were observed in leukocyte distribution during winterover. The mean percentage of monocyte concentration elevated at one timepoint. Plasma G-CSF, IL1RA, MCP-1, MIP-1ß, TNFα, and VEGF were decreased during at least one winterover timepoint, whereas RANTES was significantly increased. No statistically significant changes were observed in mean saliva cytokine concentrations. Salivary cortisol was substantially elevated throughout the entire winterover compared to baseline. Compared to shedding levels observed in healthy controls (23%), the percentage of participants who shed EBV was higher throughout all winterover timepoints (52-60%). Five subjects shed HSV1 during at least one timepoint throughout the season compared to no subjects shedding during pre-deployment. Finally, VZV reactivation, common in astronauts but exceptionally rare in ground-based stress analogs, was observed in one subject during pre-deployment and a different subject at WO2 and WO3. These pilot data, somewhat influenced by the COVID-19 pandemic, do suggest that participants at Palmer Station undergo immunological alterations similar to, but likely in reduced magnitude, as those observed in astronauts. We suggest that winterover at Palmer Station may be a suitable test analog for spaceflight biomedical countermeasures designed to mitigate clinical risks for deep space missions.


Subject(s)
Hydrocortisone , Space Flight , Humans , Hydrocortisone/analysis , Antarctic Regions , Pandemics , Pilot Projects , Astronauts , Cytokines
3.
Front Physiol ; 14: 1219221, 2023.
Article in English | MEDLINE | ID: mdl-37520819

ABSTRACT

From the early days of spaceflight to current missions, astronauts continue to be exposed to multiple hazards that affect human health, including low gravity, high radiation, isolation during long-duration missions, a closed environment and distance from Earth. Their effects can lead to adverse physiological changes and necessitate countermeasure development and/or longitudinal monitoring. A time-resolved analysis of biological signals can detect and better characterize potential adverse events during spaceflight, ideally preventing them and maintaining astronauts' wellness. Here we provide a time-resolved assessment of the impact of spaceflight on multiple astronauts (n = 27) by studying multiple biochemical and immune measurements before, during, and after long-duration orbital spaceflight. We reveal space-associated changes of astronauts' physiology on both the individual level and across astronauts, including associations with bone resorption and kidney function, as well as immune-system dysregulation.

4.
bioRxiv ; 2023 Mar 18.
Article in English | MEDLINE | ID: mdl-36993537

ABSTRACT

From the early days of spaceflight to current missions, astronauts continue to be exposed to multiple hazards that affect human health, including low gravity, high radiation, isolation during long-duration missions, a closed environment and distance from Earth. Their effects can lead to adverse physiological changes and necessitate countermeasure development and/or longitudinal monitoring. A time-resolved analysis of biological signals can detect and better characterize potential adverse events during spaceflight, ideally preventing them and maintaining astronauts' wellness. Here we provide a time-resolved assessment of the impact of spaceflight on multiple astronauts (n=27) by studying multiple biochemical and immune measurements before, during, and after long-duration orbital spaceflight. We reveal space-associated changes of astronauts' physiology on both the individual level and across astronauts, including associations with bone resorption and kidney function, as well as immune-system dysregulation.

5.
Med Sci Sports Exerc ; 55(3): 548-557, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36563092

ABSTRACT

PURPOSE: Initial military training (IMT) is a transitionary period wherein immune function may be suppressed and infection risk heightened due to physical and psychological stress, communal living, and sleep deprivation. This study characterized changes in biomarkers of innate and adaptive immune function, and potential modulators of those changes, in military recruits during IMT. METHODS: Peripheral leukocyte distribution and mitogen-stimulated cytokine profiles were measured in fasted blood samples, Epstein-Barr (EBV), varicella zoster (VZV), and herpes simplex 1 (HSV1) DNA was measured in saliva by quantitative polymerase chain reaction as an indicator of latent herpesvirus reactivation, and diet quality was determined using the healthy eating index measured by food frequency questionnaire in 61 US Army recruits (97% male) at the beginning (PRE) and end (POST) of 22-wk IMT. RESULTS: Lymphocytes and terminally differentiated cluster of differentiation (CD)4+ and CD8+ T cells increased PRE to POST, whereas granulocytes, monocytes, effector memory CD4+ and CD8+ T cells, and central memory CD8+ T cells decreased ( P ≤ 0.02). Cytokine responses to anti-CD3/CD28 stimulation were higher POST compared with PRE, whereas cytokine responses to lipopolysaccharide stimulation were generally blunted ( P < 0.05). Prevalence of EBV reactivation was higher at POST ( P = 0.04), but neither VZV nor HSV1 reactivation was observed. Diet quality improvements were correlated with CD8+ cell maturation and blunted proinflammatory cytokine responses to anti-CD3/CD28 stimulation. CONCLUSIONS: Lymphocytosis, maturation of T-cell subsets, and increased T-cell reactivity were evident POST compared with PRE IMT. Although EBV reactivation was more prevalent at POST, no evidence of VZV or HSV1 reactivation, which are more common during severe stress, was observed. Findings suggest increases in the incidence of EBV reactivation were likely appropriately controlled by recruits and immune-competence was not compromised at the end of IMT.


Subject(s)
Military Personnel , Physical Exertion , Sleep Deprivation , Stress, Psychological , Female , Humans , Male , CD28 Antigens/blood , CD8-Positive T-Lymphocytes/metabolism , Cytokines/blood , Stress, Psychological/immunology , Sleep Deprivation/immunology , CD4-Positive T-Lymphocytes/metabolism , Physical Exertion/immunology
6.
Sci Rep ; 12(1): 20847, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36522361

ABSTRACT

Long-duration spaceflight impacts human physiology, including well documented immune system dysregulation. The space food system has the potential to serve as a countermeasure to maladaptive physiological changes during spaceflight. However, the relationship between dietary requirements, the food system, and spaceflight adaptation requires further investigation to adequately define countermeasures and prioritize resources on future spaceflight missions. We evaluated the impact of an enhanced spaceflight diet, with increased quantity and variety of fruits, vegetables, fish, and other foods rich in flavonoids and omega-3 fatty acids, compared to a standard spaceflight diet on multiple health and performance outcomes in 16 subjects over four 45-day closed chamber missions in the NASA Human Exploration Research Analog (HERA). Subjects consuming the enhanced spaceflight diet had lower cholesterol levels, lower stress (i.e. cortisol levels), better cognitive speed, accuracy, and attention, and a more stable microbiome and metatranscriptome than subjects consuming the standard diet. Although no substantial changes were observed in the immune response, there were also no immune challenges, such as illness or infection, so the full benefits of the diet may not have been apparent in these analog missions. These results indicate that a spaceflight diet rich in fruits, vegetables, and omega-3 fatty acids produces significant health and performance benefits even over short durations. Further investigation is required to fully develop dietary countermeasures to physiological decrements observed during spaceflight. These results will have implications for food resource prioritization on spaceflight missions.


Subject(s)
Fatty Acids, Omega-3 , Gastrointestinal Microbiome , Space Flight , Animals , Humans , Diet , Cognition , Immunity
7.
Viruses ; 14(7)2022 06 30.
Article in English | MEDLINE | ID: mdl-35891418

ABSTRACT

We encountered two cases of varicella occurring in newborn infants. Because the time between birth and the onset of the illness was much shorter than the varicella incubation period, the cases suggested that the infection was maternally acquired, despite the fact that neither mother experienced clinical zoster. Thus, we tested the hypothesis that VZV frequently reactivates asymptomatically in late pregnancy. The appearance of DNA-encoding VZV genes in saliva was used as an indicator of reactivation. Saliva was collected from 5 women in the first and 14 women in the third trimesters of pregnancy and analyzed at two different sites, at one using nested PCR and at the other using quantitative PCR (qPCR). No VZV DNA was detected at either site in the saliva of women during the first trimester; however, VZV DNA was detected in the majority of samples of saliva (11/12 examined by nested PCR; 7/10 examined by qPCR) during the third trimester. These observations suggest that VZV reactivation occurs commonly during the third trimester of pregnancy. It is possible that this phenomenon, which remains in most patients below the clinical threshold, provides an endogenous boost to immunity and, thus, is beneficial.


Subject(s)
Chickenpox , Herpes Zoster , DNA, Viral/analysis , DNA, Viral/genetics , Female , Herpesvirus 3, Human/genetics , Humans , Infant, Newborn , Pregnancy , Real-Time Polymerase Chain Reaction
8.
Microbiome ; 10(1): 100, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35765106

ABSTRACT

BACKGROUND: The International Space Station (ISS) is a unique and complex built environment with the ISS surface microbiome originating from crew and cargo or from life support recirculation in an almost entirely closed system. The Microbial Tracking 1 (MT-1) project was the first ISS environmental surface study to report on the metagenome profiles without using whole-genome amplification. The study surveyed the microbial communities from eight surfaces over a 14-month period. The Microbial Tracking 2 (MT-2) project aimed to continue the work of MT-1, sampling an additional four flights from the same locations, over another 14 months. METHODS: Eight surfaces across the ISS were sampled with sterile wipes and processed upon return to Earth. DNA extracted from the processed samples (and controls) were treated with propidium monoazide (PMA) to detect intact/viable cells or left untreated and to detect the total DNA population (free DNA/compromised cells/intact cells/viable cells). DNA extracted from PMA-treated and untreated samples were analyzed using shotgun metagenomics. Samples were cultured for bacteria and fungi to supplement the above results. RESULTS: Staphylococcus sp. and Malassezia sp. were the most represented bacterial and fungal species, respectively, on the ISS. Overall, the ISS surface microbiome was dominated by organisms associated with the human skin. Multi-dimensional scaling and differential abundance analysis showed significant temporal changes in the microbial population but no spatial differences. The ISS antimicrobial resistance gene profiles were however more stable over time, with no differences over the 5-year span of the MT-1 and MT-2 studies. Twenty-nine antimicrobial resistance genes were detected across all samples, with macrolide/lincosamide/streptogramin resistance being the most widespread. Metagenomic assembled genomes were reconstructed from the dataset, resulting in 82 MAGs. Functional assessment of the collective MAGs showed a propensity for amino acid utilization over carbohydrate metabolism. Co-occurrence analyses showed strong associations between bacterial and fungal genera. Culture analysis showed the microbial load to be on average 3.0 × 105 cfu/m2 CONCLUSIONS: Utilizing various metagenomics analyses and culture methods, we provided a comprehensive analysis of the ISS surface microbiome, showing microbial burden, bacterial and fungal species prevalence, changes in the microbiome, and resistome over time and space, as well as the functional capabilities and microbial interactions of this unique built microbiome. Data from this study may help to inform policies for future space missions to ensure an ISS surface microbiome that promotes astronaut health and spacecraft integrity. Video Abstract.


Subject(s)
Malassezia , Microbiota , Bacteria/genetics , Humans , Metagenome , Metagenomics , Microbiota/genetics
9.
Viruses ; 14(4)2022 04 11.
Article in English | MEDLINE | ID: mdl-35458519

ABSTRACT

Human alpha herpesviruses herpes simplex virus (HSV-1) and varicella zoster virus (VZV) establish latency in various cranial nerve ganglia and often reactivate in response to stress-associated immune system dysregulation. Reactivation of Epstein Barr virus (EBV), VZV, HSV-1, and cytomegalovirus (CMV) is typically asymptomatic during spaceflight, though live/infectious virus has been recovered and the shedding rate increases with mission duration. The risk of clinical disease, therefore, may increase for astronauts assigned to extended missions (>180 days). Here, we report, for the first time, a case of HSV-1 skin rash (dermatitis) occurring during long-duration spaceflight. The astronaut reported persistent dermatitis during flight, which was treated onboard with oral antihistamines and topical/oral steroids. No HSV-1 DNA was detected in 6-month pre-mission saliva samples, but on flight day 82, a saliva and rash swab both yielded 4.8 copies/ng DNA and 5.3 × 104 copies/ng DNA, respectively. Post-mission saliva samples continued to have a high infectious HSV-1 load (1.67 × 107 copies/ng DNA). HSV-1 from both rash and saliva samples had 99.9% genotype homology. Additional physiological monitoring, including stress biomarkers (cortisol, dehydroepiandrosterone (DHEA), and salivary amylase), immune markers (adaptive regulatory and inflammatory plasma cytokines), and biochemical profile markers, including vitamin/mineral status and bone metabolism, are also presented for this case. These data highlight an atypical presentation of HSV-1 during spaceflight and underscore the importance of viral screening during clinical evaluations of in-flight dermatitis to determine viral etiology and guide treatment.


Subject(s)
Dermatitis , Epstein-Barr Virus Infections , Exanthema , Herpes Simplex , Herpesviridae Infections , Herpesvirus 1, Human , Space Flight , Viruses, Unclassified , Viruses , Biomarkers , DNA, Viral/analysis , Herpes Simplex/etiology , Herpesvirus 3, Human/physiology , Herpesvirus 4, Human , Humans , Virus Activation
10.
Front Immunol ; 12: 725748, 2021.
Article in English | MEDLINE | ID: mdl-34504500

ABSTRACT

Long-duration spaceflight is known to cause immune dysregulation in astronauts. Biomarkers of immune system function are needed to determine both the need for and effectiveness of potential immune countermeasures for astronauts. Whereas plasma cytokine concentrations are a well-established biomarker of immune status, salivary cytokine concentrations are emerging as a sensitive indicator of stress and inflammation. For this study, to aid in characterizing immune dysregulation during spaceflight, plasma and saliva cytokines were monitored in astronauts before, during and after long-duration spaceflight onboard the International Space Station. Blood was collected from 13 astronauts at 3 timepoints before, 5 timepoints during and 3 timepoints after spaceflight. Saliva was collected from 6 astronauts at 2 timepoints before spaceflight, 2 timepoints during and 3 timepoints following spaceflight. Samples were analyzed using multiplex array technology. Significant increases in the plasma concentration of IL-3, IL-15, IL-12p40, IFN-α2, and IL-7 were observed during spaceflight compared to before flight baseline. Significant decreases in saliva GM-CSF, IL-12p70, IL-10 and IL-13 were also observed during spaceflight as compared to compared to before flight baseline concentrations. Additionally, plasma TGFß1 and TGFß2 concentrations tended to be consistently higher during spaceflight, although these did not reach statistical significance. Overall, the findings confirm an in-vivo hormonal dysregulation of immunity, appearing pro-inflammatory and Th1 in nature, persists during long-duration orbital spaceflight. These biomarkers may therefore have utility for monitoring the effectiveness of biomedical countermeasures for astronauts, with potential application in terrestrial research and medicine.


Subject(s)
Cytokines/analysis , Hormones/immunology , Saliva/chemistry , Space Flight , Stress, Physiological/immunology , Astronauts , Biomarkers/analysis , Female , Humans , Immunity, Innate , Male , Middle Aged , Time Factors
12.
Front Microbiol ; 12: 659179, 2021.
Article in English | MEDLINE | ID: mdl-34149649

ABSTRACT

The International Space Station (ISS) is a uniquely enclosed environment that has been continuously occupied for the last two decades. Throughout its operation, protecting the health of the astronauts on-board has been a high priority. The human microbiome plays a significant role in maintaining human health, and disruptions in the microbiome have been linked to various diseases. To evaluate the effects of spaceflight on the human microbiome, body swabs and saliva samples were collected from four ISS astronauts on consecutive expeditions. Astronaut samples were analyzed using shotgun metagenomic sequencing and microarrays to characterize the microbial biodiversity before, during, and after the astronauts' time onboard the ISS. Samples were evaluated at an individual and population level to identify changes in microbial diversity and abundance. No significant changes in the number or relative abundance of taxa were observed between collection time points when samples from all four astronauts were analyzed together. When the astronauts' saliva samples were analyzed individually, the saliva samples of some astronauts showed significant changes in the relative abundance of taxa during and after spaceflight. The relative abundance of Prevotella in saliva samples increased during two astronauts' time onboard the ISS while the relative abundance of other commensal taxa such as Neisseria, Rothia, and Haemophilus decreased. The abundance of some antimicrobial resistance genes within the saliva samples also showed significant changes. Most notably, elfamycin resistance gene significantly increased in all four astronauts post-flight and a CfxA6 beta-lactam marker significantly increased during spaceflight but returned to normal levels post-flight. The combination of both shotgun metagenomic sequencing and microarrays showed the benefit of both technologies in monitoring microbes on board the ISS. There were some changes in each astronaut's microbiome during spaceflight, but these changes were not universal for all four astronauts. Two antimicrobial resistance gene markers did show a significant change in abundance in the saliva samples of all four astronauts across their collection times. These results provide insight for future ISS microbial monitoring studies and targets for antimicrobial resistance screenings.

13.
Ear Nose Throat J ; 100(3_suppl): 317S-324S, 2021 Jun.
Article in English | MEDLINE | ID: mdl-32921155

ABSTRACT

OBJECTIVES: Our study was aimed at finding a definitive treatment protocol for the management of sudden sensorineural hearing loss (SSNHL) and to study the prognostic factors affecting it. METHODS: This randomized clinical study was conducted on a total of 150 patients. All patients older than 10 years and presenting within 15 days of experiencing the symptom of SSNHL and with no known etiology were included. Patients were divided into 2 groups. In group I patients, we administered systemic steroids (injection dexamethasone 3 days, followed by oral deflazacort for 6 days) with liquid glycerol; and in group II, we administered systemic steroids alone (injection dexamethasone 3 days, followed by oral deflazacort for 6 days). The total time for which the treatment was instituted was 9 days and patients were assessed on the basis of their pure tone audiogram and speech discrimination score done at days 0, 3, 7, 21, and 42. RESULTS: There were 77 males and 73 females. Vertigo (P value < .00) and diabetes mellitus (P value < .001) had a negative prognostic influence on the recovery rate in both the groups. The comparison revealed that group I (DG) in which patients received injection dexamethasone with oral glycerol had a higher recovery rate of 86.7% as compared to group II (D) patients, in which patients received injection dexamethasone alone (recovery rate = 48%; P = .000 highly significant). CONCLUSIONS: Vertigo and diabetes mellitus play a negative role in the recovery of SSNHL. The novel treatment protocol we used in group I patients that is liquid glycerol and systemic steroids was significantly better and effective in treating SSNHL as compared to the group II treatment protocol of systemic steroids alone. Hence, we concluded that SSNHL is treatable that too with a good recovery rate.


Subject(s)
Dexamethasone/administration & dosage , Glucocorticoids/administration & dosage , Glycerol/administration & dosage , Hearing Loss, Sensorineural/drug therapy , Hearing Loss, Sudden/drug therapy , Administration, Oral , Adult , Age Factors , Diabetes Complications/complications , Drug Therapy, Combination , Female , Hearing Loss, Sensorineural/complications , Hearing Loss, Sudden/complications , Humans , Injection, Intratympanic , Male , Middle Aged , Sex Factors , Tinnitus/complications , Treatment Outcome , Vertigo/complications
14.
J Allergy Clin Immunol Pract ; 8(10): 3247-3250, 2020.
Article in English | MEDLINE | ID: mdl-32971311

ABSTRACT

NASA implements required medical tests and clinical monitoring to ensure the health and safety of its astronauts. These measures include a pre-launch quarantine to mitigate the risk of infectious diseases. During space missions, most astronauts experience perturbations to their immune system that manifest as a detectable secondary immunodeficiency. On return to Earth, after the stress of re-entry and landing, astronauts would be most vulnerable to infectious disease. In April 2020, a crew returned from International Space Station to NASA Johnson Space Center in Houston, Texas, during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Post-flight quarantine protocols (both crew and contacts) were enhanced to protect this crew from SARS-CoV-2. In addition, specific additional clinical monitoring was performed to determine post-flight immunocompetence. Given that coronavirus disease 2019 (COVID-19) prognosis is more severe for the immunocompromised, a countermeasures protocol for spaceflight suggested by an international team of scientists could benefit terrestrial patients with secondary immunodeficiency.


Subject(s)
Astronauts , Coronavirus Infections/prevention & control , Immunocompromised Host/immunology , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Quarantine/methods , Space Flight , Stress, Physiological/immunology , Betacoronavirus , CD4 Lymphocyte Count , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19 , Coronavirus Infections/immunology , Dietary Supplements , Exercise Therapy , Granulocyte Colony-Stimulating Factor/therapeutic use , Humans , Immunoglobulin G/therapeutic use , Interleukin-2/therapeutic use , Organizational Policy , Pneumonia, Viral/immunology , Quarantine/organization & administration , SARS-CoV-2 , Spacecraft , Texas , United States , United States National Aeronautics and Space Administration
15.
Neurosci Biobehav Rev ; 115: 68-76, 2020 08.
Article in English | MEDLINE | ID: mdl-32464118

ABSTRACT

The International Space Station (ISS) has continued to evolve from an operational perspective and multiple studies have monitored both stress and the immune system of ISS astronauts. Alterations were ascribed to a potentially synergistic array of factors, including microgravity, radiation, psychological stress, and circadian misalignment. Comparing similar data across 12 years of ISS construction and operations, we report that immunity, stress, and the reactivation of latent herpesviruses have all improved in ISS astronauts. Major physiological improvements seem to have initiated approximately 2012, a period coinciding with improvements onboard ISS including cargo delivery and resupply frequency, personal communication, exercise equipment and protocols, food quality and variety, nutritional supplementation, and schedule management. We conclude that spaceflight associated immune dysregulation has been positively influenced by operational improvements and biomedical countermeasures onboard ISS. Although an operational challenge, agencies should therefore incorporate, within vehicle design limitations, these dietary, operational, and stress-relieving countermeasures into deep space mission planning. Specific countermeasures that have benefited astronauts could serve as a therapy augment for terrestrial acquired immunodeficiency patients.


Subject(s)
Herpesviridae , Space Flight , Astronauts , Humans , Immune System , Stress, Psychological
16.
Life Sci Space Res (Amst) ; 25: 119-128, 2020 May.
Article in English | MEDLINE | ID: mdl-32414485

ABSTRACT

BACKGROUND: On long-duration spaceflight, most astronauts experience persistent immune dysregulation and the reactivation of latent herpesviruses, including varicella zoster virus (VZV). To understand the clinical risk of these perturbations to astronauts, we paralleled the immunology and virology work-up of astronauts to otherwise healthy terrestrial persons with acute herpes zoster. METHODS: Blood samples from 42 zoster patients - confirmed positive by PCR for VZV DNA in saliva (range from 100 to >285 million copies/mL) were analyzed for peripheral leukocyte distribution, T cell function, and plasma cytokine profiles via multi-parametric flow cytometry and multiplex bead-based immune-array assays. Patient findings were compared to normal value ranges specific for each assay that were defined in-house previously from healthy adult test subjects. RESULTS: Compared to the healthy adult ranges, the zoster patients possess (1) a higher proportion of constitutively activated T-cells, (2) a T-cell population skewed towards a more experienced maturation state, (3) depressed general T-cell function, and (4) a higher concentration of 20 of 22 measured plasma cytokines. DISCUSSION: The pattern of immune dysregulation in zoster patients is similar to that of astronauts during spaceflight who shed VZV DNA in their saliva. Because future deep space exploration missions will be of an unprecedented duration, prolonged immune depression and chronic viral reactivation threaten to manifest overt disease in exploration class astronauts.


Subject(s)
Cytokines/blood , Herpes Zoster/immunology , Herpesvirus 3, Human/physiology , T-Lymphocytes/immunology , Adult , Aged , Astronauts , DNA, Viral/analysis , Female , Herpes Zoster/virology , Herpesvirus 3, Human/immunology , Herpesvirus 3, Human/isolation & purification , Humans , Lymphocyte Activation , Male , Middle Aged , Saliva/virology
17.
Microbiome ; 8(1): 56, 2020 04 20.
Article in English | MEDLINE | ID: mdl-32312311

ABSTRACT

BACKGROUND: Spaceflight impacts astronauts in many ways but little is known on how spaceflight affects the salivary microbiome and the consequences of these changes on astronaut health, such as viral reactivation. In order to understand this, the salivary microbiome was analyzed with 16S rRNA gene amplicon sequencing, and saliva viral titers were analyzed with quantitative polymerase chain reaction (qPCR) with primers specific for Epstein-Barr virus (EBV), herpes simplex virus (HSV), and varicella zoster virus (VZV) from 10 astronauts pre-flight, in-flight, and post-flight. RESULTS: Streptococcus was the most abundant organism in the saliva, making up 8% of the total organisms detected, and their diversity decreased during spaceflight. Other organisms that had statistically significant changes were Proteobacteria and Fusobacteria which increased during flight and Actinobacteria which decreased during flight. At the genus level, Catonella, Megasphera, and Actinobacillus were absent in more than half of saliva samples collected pre-flight but were then detected during flight. In those subjects that already had these genera pre-flight, their relative abundances increased during flight. Correlation analyses between the microbiome and viral titers revealed a positive correlation with Gracilibacteria, Absconditabacteria, and Abiotrophia and a negative correlation between Oribacterium, Veillonella, and Haemophilus. There was also a significant positive correlation between microbiome richness and EBV viral titers. CONCLUSIONS: This is the first study to look at how the salivary microbiome changes as a result of spaceflight and the search for bacterial biomarkers for viral reactivation. Further studies examining the role of specific organisms that were shown to be correlative and predictive in viral reactivation, a serious problem in astronauts during spaceflight, could lead to mitigation strategies to help prevent disease during both short and long duration space missions. Video abstract.


Subject(s)
Bacteria/isolation & purification , Microbiota , Saliva , Space Flight , Virus Activation , Viruses/isolation & purification , Adult , Astronauts , Bacteria/classification , Biomarkers/metabolism , Humans , Male , Saliva/microbiology , Saliva/virology , Stress, Physiological , Viral Load
18.
PLoS One ; 15(4): e0231838, 2020.
Article in English | MEDLINE | ID: mdl-32348348

ABSTRACT

The International Space Station (ISS) is a complex built environment physically isolated from Earth. Assessing the interplay between the microbial community of the ISS and its crew is important for preventing biomedical and structural complications for long term human spaceflight missions. In this study, we describe one crewmember's microbial profile from body swabs of mouth, nose, ear, skin and saliva that were collected at eight different time points pre-, during and post-flight. Additionally, environmental surface samples from eight different habitable locations in the ISS were collected from two flights. Environmental samples from one flight were collected by the crewmember and samples from the next flight were collected after the crewmember departed. The microbial composition in both environment and crewmember samples was measured using shotgun metagenomic sequencing and processed using the Livermore Metagenomics Analysis Toolkit. Ordination of sample to sample distances showed that of the eight crew body sites analyzed, skin, nostril, and ear samples are more similar in microbial composition to the ISS surfaces than mouth and saliva samples; and that the microbial composition of the crewmember's skin samples are more closely related to the ISS surface samples collected by the crewmember on the same flight than ISS surface samples collected by other crewmembers on different flights. In these collections, species alpha diversity in saliva samples appears to decrease during flight and rebound after returning to Earth. This is the first study to compare the ISS microbiome to a crewmember's microbiome via shotgun metagenomic sequencing. We observed that the microbiome of the surfaces inside the ISS resemble those of the crew's skin. These data support future crew and ISS microbial surveillance efforts and the design of preventive measures to maintain crew habitat onboard spacecraft destined for long term space travel.


Subject(s)
Astronauts , Ecological Systems, Closed , Microbiota/genetics , Space Flight/instrumentation , Spacecraft , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Environmental Monitoring/methods , Humans , Metagenome/genetics , Saliva/microbiology , Skin/microbiology , Time Factors
19.
Int J Mol Sci ; 21(5)2020 Feb 29.
Article in English | MEDLINE | ID: mdl-32121406

ABSTRACT

Human cytomegalovirus (HCMV) infections are wide-spread among the general population with manifestations ranging from asymptomatic to severe developmental disabilities in newborns and life-threatening illnesses in individuals with a compromised immune system. Nearly all current drugs suffer from one or more limitations, which emphasizes the critical need to develop new approaches and new molecules. We reasoned that a 'poly-pharmacy' approach relying on simultaneous binding to multiple receptors involved in HCMV entry into host cells could pave the way to a more effective therapeutic outcome. This work presents the study of a synthetic, small molecule displaying pleiotropicity of interactions as a competitive antagonist of viral or cell surface receptors including heparan sulfate proteoglycans and heparan sulfate-binding proteins, which play important roles in HCMV entry and spread. Sulfated pentagalloylglucoside (SPGG), a functional mimetic of heparan sulfate, inhibits HCMV entry into human foreskin fibroblasts and neuroepithelioma cells with high potency. At the same time, SPGG exhibits no toxicity at levels as high as 50-fold more than its inhibition potency. Interestingly, cell-ELISA assays showed downregulation in HCMV immediate-early gene 1 and 2 (IE 1&2) expression in presence of SPGG further supporting inhibition of viral entry. Finally, HCMV foci were observed to decrease significantly in the presence of SPGG suggesting impact on viral spread too. Overall, this work offers the first evidence that pleiotropicity, such as demonstrated by SPGG, may offer a new poly-therapeutic approach toward effective inhibition of HCMV.


Subject(s)
Cytomegalovirus Infections/drug therapy , Cytomegalovirus/drug effects , Glucosides/pharmacology , Heparan Sulfate Proteoglycans/genetics , Sulfuric Acid Esters/pharmacology , Cells, Cultured , Cytomegalovirus/genetics , Cytomegalovirus/pathogenicity , Cytomegalovirus Infections/genetics , Cytomegalovirus Infections/virology , Fibroblasts/drug effects , Host-Pathogen Interactions/drug effects , Humans , Infant, Newborn , Virus Internalization/drug effects , Virus Replication/drug effects
20.
FASEB J ; 34(2): 2869-2881, 2020 02.
Article in English | MEDLINE | ID: mdl-31908052

ABSTRACT

Latent viral reactivation is a commonly reported manifestation of immune system dysregulation during spaceflight. As physical fitness and exercise training have been shown to benefit multiple arms of the immune system, we hypothesized that higher levels of preflight physical fitness and/or maintaining fitness during a mission would protect astronauts from latent viral reactivation. Standardized tests of maximal strength, muscular endurance, flexibility, and cardiorespiratory fitness (CRF) were performed in 22 international space station (ISS) crewmembers before and after a ~6-month mission. Reactivation of cytomegalovirus (CMV), Epstein-Barr virus (EBV), and varicella zoster virus (VZV) was determined in crewmembers and ground-based controls before, during, and after spaceflight. Crewmembers with higher CRF before spaceflight had a 29% reduced risk of latent viral reactivation compared to crew with lower CRF. Higher preflight upper body muscular endurance was associated with a 39% reduced risk of viral reactivation, a longer time to viral reactivation, and lower peak viral DNA concentrations, particularly for EBV and VZV. Latent viral reactivation rates were highest in crew with lower preflight CRF and higher levels of CRF deconditioning on return to Earth. We conclude that physical fitness may protect astronauts from latent viral reactivation during long duration spaceflight missions.


Subject(s)
Exercise , Herpesviridae Infections/prevention & control , Herpesviridae/physiology , Space Flight , Virus Activation , Virus Latency , Adult , DNA, Viral/blood , Female , Herpesviridae Infections/blood , Humans , Male , Middle Aged , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...