Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 4219, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760340

ABSTRACT

The limited durability of metal-nitrogen-carbon electrocatalysts severely restricts their applicability for the oxygen reduction reaction in proton exchange membrane fuel cells. In this study, we employ the chemical vapor modification method to alter the configuration of active sites from FeN4 to the stable monosymmetric FeN2+N'2, along with enhancing the degree of graphitization in the carbon substrate. This improvement effectively addresses the challenges associated with Fe active center leaching caused by N-group protonation and free radicals attack due to the 2-electron oxygen reduction reaction. The electrocatalyst with neoteric active site exhibited excellent durability. During accelerated aging test, the electrocatalyst exhibited negligible decline in its half-wave potential even after undergoing 200,000 potential cycles. Furthermore, when subjected to operational conditions representative of fuel cell systems, the electrocatalyst displayed remarkable durability, sustaining stable performance for a duration exceeding 248 h. The significant improvement in durability provides highly valuable insights for the practical application of metal-nitrogen-carbon electrocatalysts.

2.
Angew Chem Int Ed Engl ; : e202404213, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600431

ABSTRACT

Electrocatalytic carbon dioxide/carbon monoxide reduction reaction (CO(2)RR) has emerged as a prospective and appealing strategy to realize carbon neutrality for manufacturing sustainable chemical products. Developing highly active electrocatalysts and stable devices has been demonstrated as effective approach to enhance the conversion efficiency of CO(2)RR. In order to rationally design electrocatalysts and devices, a comprehensive understanding of the intrinsic structure evolution within catalysts and micro-environment change around electrode interface, particularly under operation conditions, is indispensable. Synchrotron radiation has been recognized as a versatile characterization platform, garnering widespread attention owing to its high brightness, elevated flux, excellent directivity, strong polarization and exceptional stability. This review systematically introduces the applications of synchrotron radiation technologies classified by radiation sources with varying wavelengths in CO(2)RR. By virtue of in situ/operando synchrotron radiationanalytical techniques, we also summarize relevant dynamic evolution processes from electronic structure, atomic configuration, molecular adsorption, crystal lattice and devices, spanning scales from the angstrom to the micrometer. The merits and limitations of diverse synchrotron characterization techniques are summarized, and their applicable scenarios in CO(2)RR are further presented. On the basis of the state-of-the-art fourth-generation synchrotron facilities, a perspective for further deeper understanding of the CO(2)RR process using synchrotron radiation analytical techniques is proposed.

3.
J Am Chem Soc ; 146(11): 7752-7762, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38447176

ABSTRACT

Electrochemical nitrogen reduction reaction (eNRR) offers a sustainable route for ammonia synthesis; however, current electrocatalysts are limited in achieving optimal performance within narrow potential windows. Herein, inspired by the heliotropism of sunflowers, we present a biomimetic design of Ru-VOH electrocatalyst, featuring a dynamic Ru-O-V pyramid electron bridge for eNRR within a wide potential range. In situ spectroscopy and theoretical investigations unravel the fact that the electrons are donated from Ru to V at lower overpotentials and retrieved at higher overpotentials, maintaining a delicate balance between N2 activation and proton hydrogenation. Moreover, N2 adsorption and activation were found to be enhanced by the Ru-O-V moiety. The catalyst showcases an outstanding Faradaic efficiency of 51.48% at -0.2 V (vs RHE) with an NH3 yield rate exceeding 115 µg h-1 mg-1 across the range of -0.2 to -0.4 V (vs RHE), along with impressive durability of over 100 cycles. This dynamic M-O-V pyramid electron bridge is also applicable to other metals (M = Pt, Rh, and Pd).

4.
Sci Bull (Beijing) ; 69(8): 1061-1070, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38302331

ABSTRACT

Nanosized Pt catalysts are the catalyst-of-choice for proton exchange membrane fuel cell (PEMFC) anode, but are limited by their extreme sensitivity to CO in parts per million (ppm) level, thereby making the use of ultrapure H2 a prerequisite to ensure acceptable performance. Herein, we confront the CO poisoning issue by bringing the Ir/Rh single atom sites to synergistically working with their metallic counterparts. In presence of 1000 ppm CO, the catalyst represents not only undisturbed H2 oxidation reaction (HOR) catalytic behavior in electrochemical cell, but also unparalleled peak power density at 643 mW cm-2 in single cell, 27-fold in mass activity of the best PtRu/C catalysts available. Pre-poisoning experiments and surface-enhanced Raman scattering spectroscopy (SERS) and calculation results in combine suggest the presence of adjacent Ir/Rh single atom sites (SASs) to the nanoparticles (NPs) as the origin for this prominent catalytic behavior. The single sites not only exhibit superb CO oxidation performance by themselves, but can also scavenge the CO adsorbed on approximated NPs via supplying reactive OH* species. We open up a new route here to conquer the formidable CO poisoning issue through single atom and nanoparticle synergistic catalysis, and pave the way towards a more robust PEMFC future.

5.
Small ; : e2308956, 2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38183403

ABSTRACT

The present study proposes a novel engineering concept for the customization of functionality and construction of superstructure to fabricate 2D monolayered N-doped carbon superstructure electrocatalysts decorated with Co single atoms or Co2 P nanoparticles derived from 2D bimetallic ZnCo-ZIF superstructure precursors. The hierarchically porous carbon superstructure maximizes the exposure of accessible active sites, enhances electron/mass transport efficiency, and accelerates reaction kinetics simultaneously. Consequently, the Co single atoms embedded N-doped carbon superstructure (Co-NCS) exhibits remarkable catalytic activity toward oxygen reduction reaction, achieving a half-wave potential of 0.886 V versus RHE. Additionally, the Co2 P nanoparticles embedded N-doped carbon superstructure (Co2 P-NCS) demonstrates high activity for both oxygen evolution reaction and hydrogen evolution reaction, delivering low overpotentials of 292 mV at 10 mA cm-2 and 193 mV at 10 mA cm-2 respectively. Impressively, when employed in an assembled rechargeable Zn-air battery, the as-prepared 2D carbon superstructure electrocatalysts exhibit exceptional performance with a peak power density of 219 mW cm-2 and a minimal charge/discharge voltage gap of only 1.16 V at 100 mA cm-2 . Moreover, the cell voltage required to drive an overall water-splitting electrolyzer at a current density of 10 mA cm-2 is merely 1.69 V using these catalysts as electrodes.

6.
Nat Commun ; 15(1): 242, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38172150

ABSTRACT

Heterogeneous nano-electrocatalysts doped with nonmetal atoms have been studied extensively based on the so-called dopant-based active sites, while little attention has been paid to the stability of these dopants under working conditions. In this work, we reveal significantly, when the redox working potential is too low negatively or too high positively, the active sites based on these dopants actually tend to collapse. It means that some previously observed "remarkable catalytic performance" actually originated from some unknown active sites formed in situ. Take the Bi-F for the CO2RR as an example, results show that the observed remarkable activity and stability were not directly from F-based active sites, but the defective Bi sites formed in situ after the dopant leaching. Such a fact is unveiled from several heteroatom-doped nanocatalysts for four typical reactions (CO2RR, HER, ORR, and OER). This work provides insight into the role of dopants in electrocatalysis.

7.
Small ; 20(15): e2307378, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38009801

ABSTRACT

The high-current-density Zn-air battery shows big prospects in next-generation energy technologies, while sluggish O2 reaction and diffusion kinetics barricade the applications. Herein, the sequential assembly is innovatively demonstrated for hierarchically mesoporous molybdenum carbides/carbon microspheres with a tunable thickness of mesoporous carbon layers (Meso-Mo2C/C-x, where x represents the thickness). The optimum Meso-Mo2C/C-14 composites (≈2 µm in diameter) are composed of mesoporous nanosheets (≈38 nm in thickness), which possess bilateral mesoporous carbon layers (≈14 nm in thickness), inner Mo2C/C layers (≈8 nm in thickness) with orthorhombic Mo2C nanoparticles (≈2 nm in diameter), a high surface area of ≈426 m2 g-1, and open mesopores (≈6.9 nm in size). Experiments and calculations corroborate the hierarchically mesoporous Mo2C/C can enhance hydrophilicity for supplying sufficient O2, accelerate oxygen reduction kinetics by highly-active Mo2C and N-doped carbon sites, and facilitate O2 diffusion kinetics over hierarchically mesopores. Therefore, Meso-Mo2C/C-14 outputs a high half-wave potential (0.88 V vs RHE) with a low Tafel slope (51 mV dec-1) for oxygen reduction. More significantly, the Zn-air battery delivers an ultrahigh power density (272 mW cm-2), and an unprecedented 100 h stability at a high-current-density condition (100 mA cm-2), which is one of the best performances.

8.
Natl Sci Rev ; 10(9): nwad162, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37900058

ABSTRACT

Oxygen reduction reactions (ORRs) involve a multistep proton-coupled electron process accompanied by the conversion of the apodictic spin configuration. Understanding the role of spin configurations of metals in the adsorption and desorption of oxygen intermediates during ORRs is critical for the design of efficient ORR catalysts. Herein, a platinum-rare-earth-metal-based alloy catalyst, Pt2Gd, is introduced to reveal the role of spin configurations in the catalytic activity of materials. The catalyst exhibits a unique intrinsic spin reconfiguration because of interactions between the Gd-4f and Pt-5d orbitals. The adsorption and desorption of the oxygen species are optimized by modifying the spin symmetry and electronic structures of the material for increased ORR efficiency. The Pt2Gd alloy exhibits a half-wave potential of 0.95 V and a superior mass activity of 1.5 A·mgPt-1 in a 0.1 M HClO4 electrolyte, as well as higher durability than conventional Pt/C catalysts. Theoretical calculations have proven that the spin shielding effect of Gd pairs increases the spin symmetry of Pt-5d orbitals and adsorption preferences toward spin-polarized intermediates to facilitate ORR. This work clarifies the impact of modulating the intrinsic spin state of Pt through the interaction with the local high spin 4f orbital electrons in rare-earth metals, with the aim of boosting the spin-related oxygen reduction reaction, thus fundamentally contributing to the understanding of new descriptors that control ORR activity.

9.
Angew Chem Int Ed Engl ; 62(47): e202313029, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37823848

ABSTRACT

Low-nuclear site catalysts with dual atoms have the potential for applications in energy and catalysis chemistry. Understanding the formation mechanism of dual metal sites is crucial for optimizing local structures and designing desired binuclear sites catalysts. In this study, we demonstrate for the first time the formation process of dual atoms through the pyrolysis of the interface of a double framework using Zn atoms in metal-organic frameworks and Co atoms in covalent organic frameworks. We unambiguously revealed that the cooling stage is the key point to form the binuclear sites by employing the in situ synchrotron radiation X-ray absorption spectrum technique. The binuclear site catalysts show higher activity and selectivity than single dispersed atom catalysts for electrocatalytic oxygen reduction. This work guides us to synthesize and optimize the various binuclear sites for extensive catalytic applications.

10.
Angew Chem Int Ed Engl ; 62(43): e202310973, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37667678

ABSTRACT

Full understanding to the origin of the catalytic performance of a supported nanocatalyst from the points of view of both the active component and support is significant for the achievement of high performance. Herein, based on a model electrocatalyst of single-iridium-atom-doped iron (Fe)-based layered double hydroxides (LDH) for oxygen evolution reaction (OER), we reveal the first completed origin of the catalytic performance of such supported nanocatalysts. Specially, besides the activity enhancement of Ir sites by LDH support, the stability of surface Fe sites is enhanced by doped Ir sites: DFT calculation shows that the Ir sites can reduce the activity and enhance the stability of the nearby Fe sites; while further finite element simulations indicate, the stability enhancement of distant Fe sites could be attributed to the much low concentration of OER reactant (hydroxyl ions, OH- ) around them induced by the much fast consumption of OH- on highly active Ir sites. These new findings about the interaction between the main active components and supports are applicable in principle to other heterogeneous nanocatalysts and provide a completed understanding to the catalytic performance of heterogeneous nanocatalysts.

11.
Nanotechnology ; 34(44)2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37506682

ABSTRACT

The application of electrochemical hydrodechlorination has been impeded due to the low utilization and activity of Pd catalyst. Herein, a series of Pd catalysts were prepared via the controllable evolution of Zn state during the pyrolysis of ZIF-8 nanosheet. Various forms of Pd with different chemical surroundings were generated upon the combined use of galvanic displacement and ion exchange process. Electrocatalytic hydrodechlorination of 4-chlorophenol was performed and the electrocatalytic hydrodechlorination efficiency of Pd/CN reaches 100% within 3 h at extra low Pd concentration. The coexistence of zero-valent Pd (Pd0) and nitrogen coordinated Pd (Pd-N) was verified by XAFS which provide multiple active sites for focusing on adsorbing H* and cracking C-Cl respectively. The synergetic effect between different chemical state of Pd for efficient hydrodechlorination of chloroaromatics and scheme for dexterous preparation of Pd based electrocatalyst are proposed and discussed.

12.
Rev Sci Instrum ; 94(5)2023 May 01.
Article in English | MEDLINE | ID: mdl-37171238

ABSTRACT

In catalysis, determining the relationship between the dynamic electronic and atomic structure of the catalysts and the catalytic performance under actual reaction conditions is essential to gain a deeper understanding of the reaction mechanism since the structure evolution induced by the absorption of reactants and intermediates affects the reaction activity. Hard x-ray spectroscopy methods are considered powerful and indispensable tools for the accurate identification of local structural changes, for which the development of suitable in situ reaction cells is required. However, the rational design and development of spectroscopic cells is challenging because a balance between real rigorous reaction conditions and a good signal-to-noise ratio must be reached. Here, we summarize the in situ cells currently used in the monitoring of thermocatalysis, photocatalysis, and electrocatalysis processes, focusing especially on the cells utilized in the BL14W1-x-ray absorption fine structure beamline at the Shanghai Synchrotron Radiation Facility, and highlight recent endeavors on the acquisition of improved spectra under real reaction conditions. This review provides a full overview of the design of in situ cells, aiming to guide the further development of portable and promising cells. Finally, perspectives and crucial factors regarding in situ cells under industrial operating conditions are proposed.

13.
Small ; 19(22): e2207461, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36861365

ABSTRACT

The local coordination environment of catalytical moieties directly determines the performance of electrochemical energy storage and conversion devices, such as Li-O2 batteries (LOBs) cathode. However, understanding how the coordinative structure affects the performance, especially for non-metal system, is still insufficient. Herein, a strategy that introduces S-anion to tailor the electronic structure of nitrogen-carbon catalyst (SNC) is proposed to improve the LOBs performance. This study unveils that the introduced S-anion effectively manipulates the p-band center of pyridinic-N moiety, substantially reducing the battery overpotential by accelerating the generation and decomposition of intermediate products Li1-3 O4 . The lower adsorption energy of discharging product Li2 O2 on NS pair accounts for the long-term cyclic stability by exposing the high active area under operation condition. This work demonstrates an encouraging strategy to enhance LOBs performance by modulating the p-band center on non-metal active sites.

14.
J Am Chem Soc ; 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36757303

ABSTRACT

The development of biomimetic catalytic systems that can imitate or even surpass natural enzymes remains an ongoing challenge, especially for bioinspired syntheses that can access non-natural reactions. Here, we show how an all-inorganic biomimetic system bearing robust nitrogen-neighbored single-cobalt site/pyridinic-N site (Co-N4/Py-N) pairs can act cooperatively as an oxidase mimic, which renders an engaged coupling of oxygen (O2) reduction with synthetically beneficial chemical transformations. By developing this broadly applicable platform, the scalable synthesis of greater than 100 industrially and pharmaceutically appealing O-silylated compounds including silanols, borasiloxanes, and silyl ethers via the unprecedented aerobic oxidation of hydrosilane under ambient conditions is demonstrated. Moreover, this heterogeneous oxidase mimic also offers the potential for expanding the catalytic scope of enzymatic synthesis. We anticipate that the strategy demonstrated here will pave a new avenue for understanding the underlying nature of redox enzymes and open up a new class of material systems for artificial biomimetics.

15.
Adv Mater ; 34(39): e2202568, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35963789

ABSTRACT

The electrochemical CO2 reduction reaction (CO2 RR) provides an economically feasible way for converting green energy into valuable chemical feedstocks and fuels. Great progress has been achieved in the understanding and synthesis of oxidized-based precatalysts; however, their dynamical changes of local structure under operando conditions still hinder their further applications. Here a molecularly distorted Bi2 CuO4 precatalyst for efficient CO2 -to-formate conversion is reported. X-ray absorption fine structure (XAFS) results and theoretical calculations suggest that the distorted structure with molecularly like [CuO4 ]6- unit rotation is more conducive to the structural stability of the sample. Operando XAFS and scanning transmission electron microscopy (STEM) results prove that quite a bit of lattice oxygen can remain in the distorted sample after CO2 RR. Electrochemical measurements of the distorted sample show an excellent activity and selectivity with a high formate partial current density of 194.6 mA cm-2 at an extremely low overpotential of -400 mV. Further in situ surface-enhanced infrared absorption spectroscopy (SEIRAS) and density functional theory (DFT) calculations illustrate that the retained oxygen can optimize the adsorption of *OCHO intermediate for the enhanced CO2 RR performance.

16.
Angew Chem Int Ed Engl ; 60(50): 26177-26183, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34738702

ABSTRACT

Proton-exchange membrane fuel cells (PEMFCs) are limited by their extreme sensitivity to trace-level CO impurities, thus setting a strict requirement for H2 purity and excluding the possibility to directly use cheap crude hydrogen as fuel. Herein, we report a proof-of-concept study, in which a novel catalyst comprising both Ir particles and Ir single-atom sites (IrNP @IrSA -N-C) addresses the CO poisoning issue. The Ir single-atom sites are found not only to be good CO oxidizing sites, but also excel in scavenging the CO molecules adsorbed on Ir particles in close proximity, thereby enabling the Ir particles to reserve partial active sites towards H2 oxidation. The interplay between Ir nanoparticles and Ir single-atom centers confers the catalyst with both excellent H2 oxidation activity (1.19 W cm-2 ) and excellent CO electro-oxidation activity (85 mW cm-2 ) in PEMFCs; the catalyst also tolerates CO in H2 /CO mixture gas at a level that is two times better than that of the current best PtRu/C catalyst.

17.
ACS Appl Mater Interfaces ; 13(39): 47252-47261, 2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34546698

ABSTRACT

Understanding the dynamic process of interfacial charge transfer prior to chemisorption is crucial to the development of electrocatalysis. Recently, interfacial water has been highlighted in transferring protons through the electrode/electrolyte interface; however, the identification of the related structural configurations and their influences on the catalytic mechanism is largely complicated by the amorphous and mutable structure of the electrical double layer (EDL). To this end, sub-nanometric Pt electrocatalysts, potentially offering intriguing activity and featuring fully exposed atoms, are studied to uncover the elusive electrode/electrolyte interface via operando X-ray absorption spectroscopy during the hydrogen evolution reaction (HER). Our results show that the metallic Pt clusters derived from the reduction of sub-nanometric Pt clusters (SNM-Pt) exhibit excellent HER activity, with an only 18 mV overpotential at 10 mA/cm2 and one-magnitude-higher mass activity than commercial Pt/C. More importantly, a unique Pt-interfacial water configuration with a Pt (from Pt clusters)-O (from water) radial distance of approximately 2.5 Å is experimentally identified as the structural foundation for the interfacial proton transfer. Toward high overpotentials, the interfacial water that structurally evolves from "O-close" to "O-far" accelerates the proton transfer and is responsible for the improved reaction rate by increasing the hydrogen coverage.

19.
Nat Commun ; 12(1): 2664, 2021 May 11.
Article in English | MEDLINE | ID: mdl-33976155

ABSTRACT

Metal nanoparticle (NP), cluster and isolated metal atom (or single atom, SA) exhibit different catalytic performance in heterogeneous catalysis originating from their distinct nanostructures. To maximize atom efficiency and boost activity for catalysis, the construction of structure-performance relationship provides an effective way at the atomic level. Here, we successfully fabricate fully exposed Pt3 clusters on the defective nanodiamond@graphene (ND@G) by the assistance of atomically dispersed Sn promoters, and correlated the n-butane direct dehydrogenation (DDH) activity with the average coordination number (CN) of Pt-Pt bond in Pt NP, Pt3 cluster and Pt SA for fundamentally understanding structure (especially the sub-nano structure) effects on n-butane DDH reaction at the atomic level. The as-prepared fully exposed Pt3 cluster catalyst shows higher conversion (35.4%) and remarkable alkene selectivity (99.0%) for n-butane direct DDH reaction at 450 °C, compared to typical Pt NP and Pt SA catalysts supported on ND@G. Density functional theory calculation (DFT) reveal that the fully exposed Pt3 clusters possess favorable dehydrogenation activation barrier of n-butane and reasonable desorption barrier of butene in the DDH reaction.

20.
Sci Bull (Beijing) ; 66(13): 1305-1311, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-36654152

ABSTRACT

Proton exchange membrane fuel cells (PEMFCs) suffer extreme CO poisoning even at PPM level (<10 ppm), owning to the preferential CO adsorption and the consequential blockage of the catalyst surface. Herein, however, we report that CO itself can become an easily convertible fuel in PEMFC using atomically dispersed Rh catalysts (Rh-N-C). With CO to CO2 conversion initiates at 0 V, pure CO powered fuel cell attains unprecedented power density at 236 mW cm-2, with maximum CO turnover frequency (64.65 s-1, 363 K) far exceeding any chemical or electrochemical catalysts reported. Moreover, this feature enables efficient CO selective removal from H2 gas stream through the PEMFC technique, with CO concentration reduced by one order of magnitude through running only one single cell, while simultaneously harvesting electricity. We attribute such catalytic behavior to the weak CO adsorption and the co-activation of H2O due to the interplay between two adjacent Rh sites.

SELECTION OF CITATIONS
SEARCH DETAIL
...