Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
3.
Int J Biol Sci ; 18(10): 4071-4087, 2022.
Article in English | MEDLINE | ID: mdl-35844791

ABSTRACT

Centromere protein U (CENPU), a centromere-binding protein required for cellular mitosis, has been reported to be closely associated with carcinogenesis in multiple malignancies; however, the role of CENPU in hepatocellular carcinoma (HCC) is still unclear. Herein, we investigated its biological role and molecular mechanism in the development of HCC. High CENPU expression in HCC tissue was observed and correlated positively with a poor prognosis in HCC patients. CENPU knockdown inhibited the proliferation, metastasis, and G1/S transition of HCC cells in vivo and in vitro, while ectopic expression of CENPU exerted the opposite effects. Mechanistically, CENPU physically interacted with E2F6 and promoted its ubiquitin-mediated degradation, thus affecting the transcription level of E2F1 and further accelerating the G1/S transition to promote HCC cell proliferation. E2F1 directly binds to the CENPU promoter and increases the transcription of CENPU, thereby forming a positive regulatory loop. Collectively, our findings indicate a crucial role for CENPU in E2F1-mediated signalling for cell cycle progression and reveal a role for CENPU as a predictive biomarker and therapeutic target for HCC patients.


Subject(s)
Carcinoma, Hepatocellular , E2F6 Transcription Factor/metabolism , Liver Neoplasms , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , E2F1 Transcription Factor/genetics , E2F1 Transcription Factor/metabolism , E2F6 Transcription Factor/genetics , Feedback , Gene Expression Regulation, Neoplastic/genetics , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Neoplasm Metastasis , Ubiquitination/genetics
4.
Oncogenesis ; 11(1): 31, 2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35654790

ABSTRACT

Despite of advances in treatment options, hepatocellular carcinoma (HCC) remains nearly incurable and has been recognized as the third leading cause of cancer-related deaths worldwide. As a deubiquitinating enzyme, the antitumor effect of ubiquitin-specific peptidase 53 (USP53) has been demonstrated on few malignancies. In this study, we investigated the potential antitumor role of USP53 in HCC. The results showed that USP53 was downregulated in HCC tissues as well as in HCC cell lines using both in silico data as well as patient samples. Furthermore, the ectopic expression of USP53 inhibited the proliferation, migration and invasion, and induced the apoptosis of HCC cells. Co-immunoprecipitation (CO-IP) assay and mass spectrometry (MS) combined with the gene set enrichment analysis (GSEA) identified cytochrome c (CYCS) as an interacting partner of USP53. USP53 overexpression increased the stability of CYCS in HCC cells following cycloheximide treatment. Finally, the overexpression of CYCS compensated for the decreased apoptotic rates in cells with USP53 knocked down, suggesting that USP53 induced the apoptosis in HCC cells through the deubiquitination of CYCS. To summarize, we identified USP53 as a tumor suppressor as well as a therapeutic target in HCC, providing novel insights into its pivotal role in cell apoptosis.

5.
Am J Cancer Res ; 11(5): 2238-2251, 2021.
Article in English | MEDLINE | ID: mdl-34094681

ABSTRACT

Hepatocellular carcinoma (HCC) is a common digestive tumor with high fatality worldwide. Previous studies have shown that Reticulocalbin-2 (RCN2) was a crucial factor for HCC proliferation, but invasion and migration mechanism of RCN2 contributing to HCC is poorly investigated. In this study, we estimated the RCN2 expression in both patient tissues and cell lines by polymerase chain reaction (PCR) and western blotting (WB), as well as the clinical information of HCC patients from public databases. Biological function induced by RCN2 in vitro and vivo was also researched through multiple functional experiments. Upstream and downstream signal of RCN2 was identified by bioinformatics. We found that up-regulated RCN2 was related to poorer prognosis in HCC patients and attached significance to HCC proliferation, invasion and migration. Luciferase reporter assay and chromatin immunoprecipitation validated that YY1 as the upstream transcription factor of RCN2, facilitating the expression of RCN2. Gene set enrichment analysis indicated that HCC progression induced by RCN2 might be related to MYC signaling. Furthermore, we demonstrated RCN2 reduced proteasomal degradation of MYC and lead to HCC progression. The effects of overexpressed RCN2 in HCC were attenuated by MYC silencing. In conclusion, our study highlighted the vital role of RCN2 in tumor progression and the potential benefit for the treatment of HCC.

6.
Cell Death Dis ; 12(5): 425, 2021 04 30.
Article in English | MEDLINE | ID: mdl-33931585

ABSTRACT

Serum deprivation-response protein (SDPR), a phosphatidylserine-binding protein, which is known to have a promising role in caveolar biogenesis and morphology. However, its function in hepatocellular carcinoma (HCC) was still largely unknown. In this study, we discussed the characterization and identification of SDPR, and to present it as a novel apoptosis candidate in the incidence of HCC. We identified 81 HCC cases with lower SDPR expression in the tumor tissues with the help of qRT-PCR assay, and lower SDPR expression was potentially associated with poor prognostication. The phenotypic assays revealed that cell proliferation, invasion, and migration were profoundly connected with SDPR, both in vivo and in vitro. The data obtained from the gene set enrichment analysis (GSEA) carried out on the liver hepatocellular carcinoma (LIHC), and also The Cancer Genome Atlas (TCGA) findings indicated that SDPR was involved in apoptosis and flow cytometry experiments further confirmed this. Furthermore, we identified the interaction between SDPR and apoptosis signal-regulating kinase 1 (ASK1), which facilitated the ASK1 N-terminus-mediated dimerization and increased ASK1-mediated signaling, thereby activating the JNK/p38 mitogen-activated protein kinases (MAPKs) and finally enhanced cell apoptosis. Overall, this work identified SDPR as a tumor suppressor, because it promoted apoptosis by activating ASK1-JNK/p38 MAPK pathways in HCC.


Subject(s)
Carcinoma, Hepatocellular/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , Liver Neoplasms/metabolism , MAP Kinase Kinase Kinase 5/metabolism , MAP Kinase Signaling System , Phosphate-Binding Proteins/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Apoptosis/physiology , Biomarkers, Tumor/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Hep G2 Cells , Heterografts , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Middle Aged , Transfection
7.
Oxid Med Cell Longev ; 2021: 6661534, 2021.
Article in English | MEDLINE | ID: mdl-33859780

ABSTRACT

Osteoclasts can interact with osteosarcoma to promote the growth of osteosarcoma. Cisplatin is common in adjuvant chemotherapy of osteosarcoma. However, due to chemoresistance, the efficacy is profoundly limited. Previous studies have found that zoledronic acid (ZA) has osteoclast activation inhibition and antitumor effect. However, the combined effect of ZA and cisplatin on osteosarcoma remains unclear. In vitro, the effects of ZA and cisplatin alone or in combination on 143B cell activity, proliferation, apoptosis, and ROS-PI3K/AKT signaling were detected. At the same time, the effect of ZA and cisplatin on osteoclast formation, survival, and activity was detected by TRAP staining and bone plate absorption test. These were further verified in mice. The results showed that in vitro, compared with the single treatment and control, the combination of ZA and cisplatin could significantly inhibit the activity and proliferation of 143B cells and induced their apoptosis and further promoted the generation of ROS and inhibited the phosphorylation of PI3K and AKT. ROS scavenger and the agonist of the PI3K/AKT pathway could reverse these results. In addition, cisplatin in synergy with ZA could significantly inhibit osteoclast formation and survival to reduce bone plate absorption. In vivo, compared with the single group, the tumor volume and cell proliferation were significantly reduced, apoptosis and necrosis of tumor cells increased, and TRAP+ osteoclasts and osteolysis destruction decreased in the combined group. In conclusion, ZA enhanced the antitumor effect of cisplatin on osteosarcoma by ROS-PI3K/AKT signaling, reducing the chemoresistance and osteoclast activation to enhance chemotherapy and inhibit osteolysis. And this present study raised the possibility that combining ZA and cisplatin may represent a novel strategy against osteosarcoma.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Bone Neoplasms/drug therapy , Cisplatin/pharmacology , Osteosarcoma/drug therapy , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Zoledronic Acid/pharmacology , Animals , Bone Density Conservation Agents/pharmacology , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Cell Line, Tumor , Drug Synergism , Humans , Mice , Mice, Nude , Osteolysis/drug therapy , Osteosarcoma/metabolism , Osteosarcoma/pathology , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
8.
Cancer Lett ; 499: 109-121, 2021 02 28.
Article in English | MEDLINE | ID: mdl-33259899

ABSTRACT

Hepatocellular carcinoma (HCC) is a malignancy found at high frequency around the world. Unfortunately, the scarcity of effective early diagnostic methods invariably results in poor outcomes. Long noncoding RNAs (lncRNAs) are known to regulate the progression of hepatocellular carcinoma (HCC). A novel lncRNA RP11-286H15.1(OTTHUMG00000186042) has been identified and associated with HCC; however, the potential role of RP11-286H15.1 in HCC remains undefined. The transcript abundance of RP11-286H15.1 in 80 pairs of HCC samples and cell lines was evaluated by qRT-PCR analysis. The functional role of RP11-286H15.1 in HCC was tested in vivo and in vitro. The mechanisms underlying the role of RP11-286H15.1 in HCC were explored by RNA pulldown, transcriptome sequencing, and RNA immunoprecipitation (RIP), ubiquitination and fluorescence in situ hybridization (FISH) assays as well as Western blot analysis. The qRT-PCR and FISH assays revealed that RP11-286H15.1 was significantly decreased in HCC, and implied a shorter survival time. RP11-286H15.1 overexpression inhibited HCC cell proliferation and metastasis in vitro and in vivo, whereas RP11-286H15.1 knockdown produced the opposite results. Furthermore, we confirmed that RP11-286H15.1 (620-750 nucleotides) binds to poly(A) binding protein 4 (PABPC4) and promotes its ubiquitination, thus, reducing the stability of TRIM37 and CDC27 mRNAs. Our study demonstrates that a novel lncRNA, RP11-286H15.1, represses HCC progression by promoting PABPC4 ubiquitination. These findings highlight potential therapeutic targets for HCC.


Subject(s)
Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , RNA, Long Noncoding/metabolism , Ubiquitination/genetics , Aged , Apc3 Subunit, Anaphase-Promoting Complex-Cyclosome/genetics , Apc3 Subunit, Anaphase-Promoting Complex-Cyclosome/metabolism , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Disease Progression , Female , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Liver/pathology , Liver Neoplasms/mortality , Liver Neoplasms/pathology , Male , Middle Aged , RNA Stability/genetics , RNA, Long Noncoding/genetics , RNA, Messenger/metabolism , RNA-Seq , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
9.
Am J Cancer Res ; 10(8): 2355-2370, 2020.
Article in English | MEDLINE | ID: mdl-32905514

ABSTRACT

Hepatocellular carcinoma (HCC) is leading cause of tumor-related deaths worldwide. The intracellular chloride channel protein (CLIC1) plays a role in the occurrence and progression of HCC, although the underlying mechanisms are still unclear. We evaluated the CLIC1 mRNA and protein levels in both patient tissues and HCC cell lines, and analyzed the correlation between CLIC1 expression and clinical features. The biological function of CLIC1 in HCC was examined in vivo and in vitro. The upstream regulatory factors were identified by bioinformatics programs, and downstream mechanisms affecting HCC behavior have also been explored and validated. CLIC1 was up-regulated in HCC tissues and cell lines, and promoted the proliferation, invasion and migration of HCC cells in vivo and in vitro. TP53 was identified as the upstream transcription factor of CLIC1. MiR-122-5p also regulated CLIC1 levels by degrading the transcripts. More importantly, we found that the increased CLIC1 was significantly related to the activation of MYC signaling. By binding with MYC, CLIC1 enhanced the transcription activity of MYC to downstream genes, rather than by altering its expression. Finally, a positive feedback regulatory loop between CLIC1 and MYC was established. CLIC1 is closely related to the occurrence, progression and prognosis of HCC, and a promising novel therapeutic target.

10.
J Exp Clin Cancer Res ; 39(1): 97, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32487115

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most common malignancies today. Patients suffer from HCC since its high malignancy and limited treatment means. With the development of genetic research, new therapeutic strategy comes up in the way of gene editing. Clustered regularly interspaced short palindromic repeat/CRISPR-associated nuclease 9 (CRISPR/Cas9) was discovered as an immune sequence in bacteria and archaea. After artificial transformation and follow-up research, it is widely used as a gene editing tool. In this review, the development of CRISPR/Cas9 is summarized in retrospect. Through the evaluation of novel research in HCC, it is concluded that CRISPR/Cas9 would promote cancer research and provide a new tool for genetic treatment in prospect.


Subject(s)
CRISPR-Cas Systems , Carcinoma, Hepatocellular/therapy , Gene Editing , Genetic Therapy , Liver Neoplasms/therapy , Neoplasm Proteins/genetics , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Neoplasm Proteins/antagonists & inhibitors
11.
J Cell Physiol ; 235(11): 7849-7862, 2020 11.
Article in English | MEDLINE | ID: mdl-31943198

ABSTRACT

Our previous studies have indicated that long noncoding RNA (lncRNA) SPRY4 intronic transcript 1 (SPRY4-IT1) was highly expressed in hepatocellular carcinoma (HCC). However, it still remained unclear how SPRY4-IT1 worked in tumorgenesis in HCC. In this study, we tested the overexpression of SPRY4-IT1 in HCC tissues and cells through a quantitative real-time polymerase chain reaction. Statistical analyses showed that the upregulation had an association with the tumor node metastasis stage, thrombin time, and alkaline phosphatase. Furthermore, SPRY4-IT1 could be involved in cell proliferation, metastasis, and the epithelial-to-mesenchymal transition (EMT) process in HCC in vitro and in vivo. RNA-sequencing and transcriptome analysis were carried out to explore the mechanism of SPRY4-IT1 in HCC. With SPRY4-IT1 being knocked down or overexpressed, the level of proteins in the tumor necrosis factor (TNF) signaling pathway changed. We detected the RNA binding protein heterogeneous nuclear ribonucleoprotein L (HNRNPL) as a SPRY4-IT1 interacting protein through RNA pull-down assay and liquid chromatography-mass spectrometry, then verified through RNA immunoprecipitation. Downregulation of HNRNPL induced the change of proteins observed on SPRY4-IT1 downregulation revealing the SPRY4-IT1: HNRNPL complex in the TNF signaling pathway and EMT process in HCC. In general, our experimental data and analysis demonstrated the role of SPRY4-IT1 in promoting progress and metastasis of HCC by the TNF signaling pathway.


Subject(s)
Carcinoma, Hepatocellular/pathology , Gene Expression Regulation, Neoplastic/genetics , Liver Neoplasms/pathology , RNA, Long Noncoding/genetics , Ribonucleoproteins/genetics , Adult , Aged , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , Female , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Middle Aged , Neoplasm Invasiveness/genetics , RNA, Long Noncoding/metabolism , Ribonucleoproteins/metabolism , Signal Transduction/physiology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...