Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
2.
Thromb J ; 22(1): 56, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943162

ABSTRACT

BACKGROUND: Hypercoagulability emerges as a central pathological feature and clinical complication in nephrotic syndrome. Increased platelet activation and aggregability are closely related to hypercoagulability in nephrotic syndrome. Monocyte-platelet aggregates (MPAs) have been proposed to represent a robust biomarker of platelet activation. The aim of this study was to investigate levels of the circulating MPAs and MPAs with the different monocyte subsets to evaluate the association of MPAs with hypercoagulability in nephrotic syndrome. METHODS: Thirty-two patients with nephrotic syndrome were enrolled. In addition, thirty-two healthy age and sex matched adult volunteers served as healthy controls. MPAs were identified by CD14 monocytes positive for CD41a platelets. The classical (CD14 + + CD16-, CM), the intermediate (CD14 + + CD16+, IM) and the non-classical (CD14 + CD16++, NCM) monocytes, as well as subset specific MPAs, were measured by flow cytometry. RESULTS: Patients with nephrotic syndrome showed a higher percentage of circulating MPAs as compared with healthy controls (p < 0.001). The percentages of MPAs with CM, IM, and NCM were higher than those of healthy controls (p = 0.012, p < 0.001 and p < 0.001, respectively). Circulating MPAs showed correlations with hypoalbuminemia (r=-0.85; p < 0.001), hypercholesterolemia (r = 0.54; p < 0.001), fibrinogen (r = 0.70; p < 0.001) and D-dimer (r = 0.37; p = 0.003), but not with hypertriglyceridemia in nephrotic syndrome. The AUC for the prediction of hypercoagulability in nephrotic syndrome using MPAs was 0.79 (95% CI 0.68-0.90, p < 0.001). The sensitivity of MPAs in predicting hypercoagulability was 0.71, and the specificity was 0.78. CONCLUSION: Increased MPAs were correlated with hypercoagulability in nephrotic syndrome. MPAs may serve as a potential biomarker for thrombophilic or hypercoagulable state and provide novel insight into the mechanisms of anticoagulation in nephrotic syndrome.

3.
Cell Transplant ; 33: 9636897241259433, 2024.
Article in English | MEDLINE | ID: mdl-38877672

ABSTRACT

Islet transplantation may be the most efficient therapeutic technique for patients with type 1 diabetes mellitus (T1DM). However, the clinical application of this method is faced with numerous limitations, including isolated islet apoptosis, recipient rejection, and graft vascular reconstruction. Mesenchymal stem cells (MSCs) possess anti-apoptotic, immunomodulatory, and angiogenic properties. Here, we review recent studies on co-culture and co-transplantation of islets with MSCs. We have summarized the methods of preparation of co-transplantation, especially the merits of co-culture, and the effects of co-transplantation. Accumulating experimental evidence shows that co-culture of islets with MSCs promotes islet survival, enhances islet secretory function, and prevascularizes islets through various pretransplant preparations. This review is expected to provide a reference for exploring the use of MSCs for clinical islet co-transplantation.


Subject(s)
Coculture Techniques , Islets of Langerhans Transplantation , Islets of Langerhans , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Islets of Langerhans Transplantation/methods , Humans , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Islets of Langerhans/cytology , Animals , Coculture Techniques/methods , Diabetes Mellitus, Type 1/therapy
4.
BMC Public Health ; 24(1): 1387, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783252

ABSTRACT

BACKGROUND: The association between bone fracture and cardiovascular diseases is examined in this study. While basic research has established a connection between fractures and heart attacks through the linkage between bones and arteries, population studies have not provided clear evidence. The aim of the present study is to investigate the association between bone fracture and the occurrence of myocardial infarction in a natural population during long-term follow-up. METHODS: A total of 13,196 adult participants with bone fracture history at baseline from the China Health and Nutrition Survey (CHNS) prospective cohort were included in this study. Baseline investigation was performed in 1997-2009 and the outcome was followed up till 2015. Hazard ratios (HRs) and their corresponding 95% confidence intervals (CIs) were calculated using Cox proportional hazards models. RESULTS: From 1997 to 2015, a total of 329 incident myocardial infarction cases were identified. In univariate and multivariate Cox regression analysis, a history of bone fracture was associated with an increased risk of myocardial infarction incidence in the total population (for the crude model: HR = 2.56, 95% CI 1.83-3.53, P < 0.001; for the multivariate model: HR = 1.43, 95% CI 1.02-1.99, P = 0.036). In the stratified analysis, bone fracture was not associated with an increased risk of incident myocardial infarction in subjects with age < 50 years (HR = 0.71, 95% CI 0.34-1.47, P = 0.356), but significantly associated with an increased risk of incident myocardial infarction in subjects with age ≥ 50 years (HR = 1.80, 95% CI 1.23-2.63, P = 0.003). CONCLUSIONS: It is suggested by the present study that bone fracture may be associated with an increased risk of incident myocardial infarction in the elderly population during long-term follow-up.


Subject(s)
Fractures, Bone , Myocardial Infarction , Humans , Myocardial Infarction/epidemiology , Male , Female , Middle Aged , China/epidemiology , Fractures, Bone/epidemiology , Incidence , Follow-Up Studies , Adult , Prospective Studies , Aged , Risk Factors , Proportional Hazards Models , Nutrition Surveys
5.
ACS Nano ; 18(21): 13568-13582, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38723039

ABSTRACT

Transition metal oxides are promising catalysts for catalytic oxidation reactions but are hampered by low room-temperature activities. Such low activities are normally caused by sparse reactive sites and insufficient capacity for molecular oxygen (O2) activation. Here, we present a dual-stimulation strategy to tackle these two issues. Specifically, we import highly dispersed nickel (Ni) atoms onto MnO2 to enrich its oxygen vacancies (reactive sites). Then, we use molecular ozone (O3) with a lower activation energy as an oxidant instead of molecular O2. With such dual stimulations, the constructed O3-Ni/MnO2 catalytic system shows boosted room-temperature activity for toluene oxidation with a toluene conversion of up to 98%, compared with the O3-MnO2 (Ni-free) system with only 50% conversion and the inactive O2-Ni/MnO2 (O3-free) system. This leap realizes efficient room-temperature catalytic oxidation of transition metal oxides, which is constantly pursued but has always been difficult to truly achieve.

6.
Nat Rev Chem ; 8(6): 410-432, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38755296

ABSTRACT

Intercalation of atoms, ions and molecules is a powerful tool for altering or tuning the properties - interlayer interactions, in-plane bonding configurations, Fermi-level energies, electronic band structures and spin-orbit coupling - of 2D materials. Intercalation can induce property changes in materials related to photonics, electronics, optoelectronics, thermoelectricity, magnetism, catalysis and energy storage, unlocking or improving the potential of 2D materials in present and future applications. In situ imaging and spectroscopy technologies are used to visualize and trace intercalation processes. These techniques provide the opportunity for deciphering important and often elusive intercalation dynamics, chemomechanics and mechanisms, such as the intercalation pathways, reversibility, uniformity and speed. In this Review, we discuss intercalation in 2D materials, beginning with a brief introduction of the intercalation strategies, then we look into the atomic and intrinsic effects of intercalation, followed by an overview of their in situ studies, and finally provide our outlook.

7.
Small ; : e2401258, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38794878

ABSTRACT

Manganese oxide-based aqueous zinc-ion batteries (ZIBs) are attractive energy storage devices, owing to their good safety, low cost, and ecofriendly features. However, various critical issues, including poor conductivity, sluggish reaction kinetics, and unstable structure still restrict their further development. Oxygen defect engineering is an effective strategy to improve the electrochemical performance of manganese oxides, but challenging in the accurate regulation of oxygen defects. In this work, an effective and controllable defect engineering strategy-controllable electrochemical lithium-ion intercalation - is proposed to tackle this issue. The incorporation of lithium ions and oxygen defects can promote the conductivity, lattice spacing, and structural stability of Mn2O3 (MO), thus improving its capacity (232.7 mAh g-1), rate performance, and long-term cycling stability (99.0% capacity retention after 3000 cycles). Interestingly, the optimal ratio of intercalated lithium-ion varies at different temperature or mass-loading of MO, which provides the possibility to customize diverse ZIBs to meet different application conditions. In addition, the fabricated ZIBs present good flexibility, superior safety, and admirable adaptability under extreme temperatures (-20-100 °C). This work provides an inspiration on the structural customization of metal oxide nanomaterials for diverse ZIBs, and sheds light on the construction of future portable electronics.

8.
Adv Mater ; 36(31): e2403385, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38769003

ABSTRACT

Capacitive deionization (CDI) has emerged as a promising technology for freshwater recovery from low-salinity brackish water. It is still inapplicable in specific scenarios (e.g., households, islands, or offshore platforms) due to too low volumetric adsorption capacities. In this study, a high-density semi-metallic molybdenum disulfide (1T'-MoS2) electrode with compact architecture obtained by restacking of exfoliated nanosheets, which achieve high capacitance up to ≈277.5 F cm-3 under an ultrahigh scan rate of 1000 mV s-1 with a lower charge-transfer resistance and nearly tenfold higher electrochemical active surface area than the 2H-MoS2 electrode, is reported. Furthermore, 1T'-MoS2 electrode demonstrates exceptional volumetric desalination capacity of 65.1 mgNaCl cm-3 in CDI experiments. Ex situ X-ray diffraction (XRD) reveal that the cation storage mechanism with the dynamic expansion of 1T'-MoS2 interlayer to accommodate cations such as Na+, K+, Ca2+, and Mg2+, which in turn enhances the capacity. Theoretical analysis unveils that 1T' phase is thermodynamically preferable over 2H phase, the ion hydration and channel confinement also play critical role in enhancing ion adsorption. Overall, this work provides a new method to design compact 2D-layered nanolaminates with high-volumetric performance for CDI desalination.

9.
Sci Rep ; 14(1): 8005, 2024 04 05.
Article in English | MEDLINE | ID: mdl-38580695

ABSTRACT

The association between high blood pressure and fracture showed obvious discrepancies and were mostly between hypertension with future fracture, but rarely between fracture and incident hypertension. The present study aims to investigate the associations of hypertension with future fracture, and fracture with incident hypertension. We included adult participants from the China Health and Nutrition Survey (CHNS) prospective cohort in 1997-2015 (N = 10,227), 2000-2015 (N = 10,547), 2004-2015 (N = 10,909), and 2006-2015 (N = 11,121) (baseline in 1997, 2000, 2004, 2006 respectively and outcome in 2015). Cox proportional hazards models were used to estimate hazard ratios (HRs) and 95% CIs. In the analysis of the association between hypertension and future fracture, the adjusted HRs (95% CIs) were 1.34 (0.95-1.90) in 1997-2015, 1.40 (1.04-1.88) in 2000-2015, 1.32 (0.98-1.78) in 2004-2015, and 1.38 (1.01-1.88) in 2006-2015. In the analysis of the association between fracture and incident hypertension, the adjusted HRs (95% CIs) were 1.28 (0.96-1.72) in 1997-2015, 1.18 (0.94-1.49) in 2000-2015, 1.12 (0.89-1.40) in 2004-2015, and 1.09 (0.85-1.38) in 2006-2015. The present study showed that hypertension history was associated with increased risk of future fracture, but not vice versa.


Subject(s)
Fractures, Bone , Hypertension , Adult , Humans , Prospective Studies , Risk Factors , Health Surveys , Blood Pressure , Proportional Hazards Models
10.
Nanomicro Lett ; 16(1): 180, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662149

ABSTRACT

The design of cost-effective electrocatalysts is an open challenging for oxygen evolution reaction (OER) due to the "stable-or-active" dilemma. Zirconium dioxide (ZrO2), a versatile and low-cost material that can be stable under OER operating conditions, exhibits inherently poor OER activity from experimental observations. Herein, we doped a series of metal elements to regulate the ZrO2 catalytic activity in OER via spin-polarized density functional theory calculations with van der Waals interactions. Microkinetic modeling as a function of the OER activity descriptor (GO*-GHO*) displays that 16 metal dopants enable to enhance OER activities over a thermodynamically stable ZrO2 surface, among which Fe and Rh (in the form of single-atom dopant) reach the volcano peak (i.e. the optimal activity of OER under the potential of interest), indicating excellent OER performance. Free energy diagram calculations, density of states, and ab initio molecular dynamics simulations further showed that Fe and Rh are the effective dopants for ZrO2, leading to low OER overpotential, high conductivity, and good stability. Considering cost-effectiveness, single-atom Fe doped ZrO2 emerged as the most promising catalyst for OER. This finding offers a valuable perspective and reference for experimental researchers to design cost-effective catalysts for the industrial-scale OER production.

11.
Opt Express ; 32(4): 6587-6596, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38439358

ABSTRACT

We propose using physical-informed neural network (PINN) for power evolution prediction in bidirectional Raman amplified WDM systems with Rayleigh backscattering (RBS). Unlike models based on data-driven machine learning, PINN can be effectively trained without preparing a large amount of data in advance and can learn the potential rules of power evolution. Compared to previous applications of PINN in power prediction, our model considers bidirectional Raman pumping and RBS, which is more practical. We experimentally demonstrate power evolution prediction of 200 km bidirectional Raman amplified wavelength-division multiplexed (WDM) system with 47 channels and 8 pumps using PINN. The maximum prediction error of PINN compared to experimental results is only 0.38 dB, demonstrating great potential for application in power evolution prediction. The power evolution predicted by PINN shows good agreement with the results simulated by traditional numerical method, but its efficiency is more suitable for establishing models and calculating noise, providing convenience for subsequent power configuration optimization.

12.
Photoacoustics ; 37: 100595, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38404402

ABSTRACT

This paper reports a mini-resonant photoacoustic sensor for high-sensitivity trace gas sensing. The sensor primarily contains a sphere-cylinder coupled acoustic resonator, a cylindrical buffer chamber, and a fiber-optic acoustic sensor. The acoustic field distributions of this mini-resonant photoacoustic sensor and the conventional T-type resonant photoacoustic sensor have been carefully evaluated, showing that the first-order resonance frequency of the present mini-resonant photoacoustic sensor is reduced by nearly a half compared to that of the T-type resonant photoacoustic sensor. The volume of the developed photoacoustic cavity is only about 0.8 cm3. Trace methane is selected as the target analytical gas and a detection limit of 101 parts-per-billion at 100-s integration time has been achieved, corresponding to a normalized noise equivalent absorption (NNEA) coefficient of 1.04 × 10-8 W·cm-1·Hz-1/2. The developed mini-resonant photoacoustic sensor provides potential for high-sensitivity trace gas sensing in narrow spaces.

13.
Int Ophthalmol ; 44(1): 53, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38340174

ABSTRACT

High-throughput sequencing technology, also known as next-generation sequencing technology, can explore new biomarkers and specific gene mutations. It has a pivotal role in promoting the gene research, which can limit the detection area, lessen the time needed for sequencing. Also, it can quickly screen out the suspected pathogenic genes of patients, gain the necessary genetic data, and provide the basis for clinical diagnosis and genetic counseling. In the research of corneal diseases, through the DNA sequencing of patients' diseased cells, it can provide a deeper understanding of corneal diseases and improve the diagnosis, classification and treatment alternatives of various corneal diseases. This article will introduce the application progress of high-throughput sequencing technology in corneal diseases, which will help to understand the application of this technology in various corneal diseases.


Subject(s)
High-Throughput Nucleotide Sequencing , Humans , Mutation , Sequence Analysis, DNA
14.
Opt Express ; 32(3): 3046-3061, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38297536

ABSTRACT

What we believe to be a novel low-cost broadband continuous-wave water vapor differential absorption lidar (CW-DIAL) technique has been proposed and implemented by combing the Scheimpflug principle and the differential absorption method. The broadband CW-DIAL technique utilizes an 830-nm high-power multimode laser diode with 3-W output power as a tunable light source and a CMOS image sensor tilted at 45° as the detector. A retrieval algorithm dedicated for the broadband CW-DIAL technique has been developed to obtain range-resolved water vapor concentration from the DIAL signal. Atmospheric remote sensing of water vapor has been carried out on a near-horizontal water vapor path to validate the performance of the broadband CW-DIAL system. The retrieved water vapor concentration showed a good consistency with those measured by an air quality monitoring station, with a correlation coefficient of 0.9669. The fitting error of the water vapor concentration is found to be less than 10%. Numerical simulation studies have revealed that the aerosol-induced error on the water vapor concentration is below 5% with a background water vapor concentration of 5 g/m3 for most atmospheric conditions. The experimental results have successfully demonstrated the feasibility of the present broadband CW-DIAL technique for range-resolved water vapor remote sensing.

15.
Chinese Pharmacological Bulletin ; (12): 545-551, 2024.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1013581

ABSTRACT

Aim To investigate the effects of 2-dode-cyl-6-methoxycyclohexa-2 , 5-diene-l, 4-dione ( DM-DD) on resisting hepatic fibrosis induced by carbon tetrachloride ( CC14 ) in rats and the underlying mechanisms , with a specific focus on the TGF-pi/Smads signaling pathway. Methods The hepatic fibrosis model was replicated using 50% CC14. Various parameters, including levels of aspartate transferase ( AST) , ala-nine transferase ( ALT ) , albumin/globulin ( A/G ) , total protein (TP) , total bilirubin (T-BIL) , hyaluron-ic acid ( HA ) , laminin ( LN ) , collagen type Ж ( Col Ж) , and collagen type IV(ColIV) in the blood, were measured. Liver tissue lesions and fiber formation were observed using HE and Masson staining. The expression levels of a smooth muscle actin (a-SMA) , collagen type I ( Col I ) , transformed growth factor (TGF-pi), Smad2, and Smad7 proteins were assessed using immunohistochemistry. a-SMA, Coll, TGF-pi, and Smad7 mRNA levels in liver tissue were measured by RT-PCR. Additionally, the expression levels of TGF-pi, Smad4, and Smad7 proteins in liver tissue were determined by Western blot. Results In comparison to the normal control group, the model group exhibited significantly elevated levels of AST, ALT, TP, T-BIL, HA, LN, Col Ш and Col IV in serum. But A/G level notably decreased. Successful modeling was confirmed by the presence of extensive fiber formations observed through HE and Massonstaining in liver tissue. The DMDD administration group demonstrated a notable decrease levels of AST, ALT, TP, T-BIL, HA, LN, Col III, and CollV, but A/G was significantly elevated when compared to the model group. Furthermore, a-SMA, Coll, TGF-f31, Smad2 and Smad4 mRNA and protein levels in the DMDD administration group were significantly reduced, while Smad7 significantly declined. HE and Masson staining results reflected a marked reduction in fibrous hyper-plasia. Conclusion DMDD exhibits a protective effect against CCl4-induced hepatic fibrosis, and its mechanism appears to be associated with the TGF-fJl/ Smads signaling pathway.

16.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1024315

ABSTRACT

Objective To explore the effect and influencing factors of prosthesis placement angle on hip replacement for bone fusion of hip joint.Methods A total of 100 patients with bone fusion of hip joint who were admitted to our hospital from May 2019 to January 2022 were selected as the research objects and randomly divided into the observation group(n=50)and the control group(n=50).The prosthesis placement angle was 30° to 40° in the observation group and 41° to 50° in the control group.The clinical data,VAS score and Harris score before and after operation,and postoperative complications of the two groups were compared.The improvement of hip joint function of the two groups was compared by random walking model.According to the prognosis of patients,patients were divided into the poor prognosis group(n=32)and the good prognosis group(n=68).Univariate and multivariate Logistic regression analysis were used to analyze the independent influencing factors of the prognosis of hip replacement for bone fusion of hip joint,and a prediction model was constructed and verified.Results The Harris score 6 months after operation in the observation group was significantly higher than that in the control group(P<0.05),and there was no significant difference in VAS score before and after operation and incidence of complications after operation between the two groups(P>0.05).The results of random walking model showed that the improvement of hip joint function in the observation group was better than that in the control group.There were significant differences in age,hyperlipidemia,osteoporosis,prosthesis placement angle,intraoperative blood loss,emotional disorder,postoperative complications,rehabilitation training and postoperative outdoor activity time of patients between the good prognosis group and the poor prognosis group(P<0.05).Multivariate Logistic regression analysis showed that osteoporosis and prosthesis placement angle of 41° to 50° were the independent risk factors of the prognosis of hip replacement for bone fusion of hip joint(P<0.05),and rehabilitation training was the protective factor(P<0.05).A prediction model of the prognosis of hip replacement for bone fusion of hip joint was constructed.The calibration curve of the model fit well with the ideal curve,and the area under the receiver operating characteristic curve(AUC)was 0.854(95%CI:0.830 to 0.871),which indicates that the prediction model had good accuracy.The concordance index(C-index)of the model was 0.849(95%CI:0.817 to 0.868),which indicates that the model had high discrimination.Conclusion The prosthesis placement angle of 30° to 40° can significantly improve the postoperative hip joint function of patients,and the therapeutic effect is significant.Osteoporosis,prosthesis placement angle,and rehabilitation training are the independent influencing factors of the prognosis of hip replacement for bone fusion of hip joint.

17.
Chinese Pharmacological Bulletin ; (12): 1149-1156, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1013791

ABSTRACT

Aim: To investigate the alleviating effect of NMDA receptor blocking on learning and memory impairment induced by gp120 in rats and its mechanism. Methods: (1 ) Thirty-two SD rats were randomly divided into control group, sham operation group, gpl20 group, and gp120 + Memantine group. Except for the control group, the other groups underwent a bilateral hippocampal injection to establish the model of learning and memory impairment in rats. Memantine (10 mg • kg

18.
Chinese Pharmacological Bulletin ; (12): 1472-1480, 2022.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1014226

ABSTRACT

Aim To investigate the effects of PTEN-induced putative kinase1(PINK1)mediated mitophagy on senescence and function of rat bone marrow endothelial progenitor cells(EPCs)by using small interfering RNA(siRNA)technology to knock down the PINK1 gene in rat bone marrow EPCs.Methods EPCs from bone marrow in rats were isolated, cultured and identified.After counting, EPCs were randomlydivided into control group, negative control group(NC siRNA), and Pink1 transfection group(PINK1 siRNA).The expression of PINK1 mRNA and protein in cells in various groups were detected by qRT-PCR and Western blot.At the same time, different time points were chosen to simulate the aging process based on the best knock down time.The senescence of cells was detected by SA-β-galactosidase staining and p16 protein expression.The function of cell proliferation, migration and tubule formation was detected by CCK-8, Transwell chamber and in vitro angiogenesis kit.ROS level was detected by flow cytometry.The expressions of PINK1, Parkin, LC3, and p62 were detected by Western blot.Mitochondria and autophagosomes were observed by transmission electron microscope.Results 48 h after PINK1 siRNA transfected, PINK1 was effectively knocked down.Compared with control group, the positive rate of blue staining and the expression of p16 protein in PINK1 siRNA group increased significantly 48 h and 96 h after transfection.The function of cell proliferation, migration and tubule formation decreased significantly.The level of ROS increased significantly, while the expression of PINK1, Parkin and LC3 protein decreased significantly, and p62 protein expression increased significantly.Under the transmission electron microscope, the mitochondria swelled and denatured, and the number of autophagosomes decreased in the PINK1 siRNA group.Conclusions The down-regulation of PINK1 gene can aggravate the senescence of EPCs, and PINK1 mediated mitophagy may participate in the regulation of senescence and function of EPCs.

19.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-940434

ABSTRACT

ObjectiveTo predict the molecular mechanism of resveratrol against non-alcoholic fatty liver disease (NAFLD) based on network pharmacology and molecular docking and verify the results on the liver cell model induced by PM2.5 exposure. MethodThe targets of resveratrol were screened out from Traditional Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP), PubChem, DrugBank, and SwissTargetPrediction, and the potential targets of NAFLD were retrieved from Comparative Toxicogenomics Database (CTD), DisGeNET, GeneCards, and Online Mendelian Inheritance in Man (OMIM). Then the common targets were obtained. STRING 11.5 was used to construct the protein-protein interaction (PPI) network of the common targets. Cytoscape 3.8.2 was used to plot the “target-pathway” network, and the core modules and key targets were selected. Metascape was adopted for Gene Ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses of common targets. SYBYL-X 2.0 was used for molecular docking of resveratrol to key targets. Finally,cell apoptosis and the expression of apoptosis-related proteins were detected by flow cytometry and Western blot in the PM2.5-exposed human liver cell line (HepG2). ResultA total of 115 common targets of resveratrol and NAFLD were obtained. The key targets included tumor necrosis factor (TNF), B-cell lymphoma-2 (Bcl-2), and cysteinyl aspartate-specific protease-3(Caspase-3). As revealed by KEGG enrichment analysis, 174 signaling pathways, represented by the apoptosis and TNF signaling pathways, were obtained. Molecular docking results showed that resveratrol had strong binding activities to Bcl-2 and Caspase-3. Furthermore,the results of flow cytometry and Western blot demonstrated that resveratrol inhibited cell apoptosis of PM2.5-exposed HepG2 cells by regulating the protein expression of Bcl-2 and Caspase-3. ConclusionResveratrol can treat NAFLD in a multi-pathway and multi-target way. It mainly inhibits liver cell apoptosis by affecting the expression of Bcl-2 and Caspase-3, which provides a theoretical basis for the follow-up research on the anti-NAFLD mechanism of resveratrol.

20.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-907097

ABSTRACT

ObjectiveTo investigate the level of serum antibodies in COVID-19 patients six months after discharge, and to provide data to evaluate the duration of IgM, IgG and neutralizing antibody titers in the patients. MethodsEnzyme-linked immunosorbent assay (ELISA) was used to determine the antibody levels of IgM and IgG, and the new coronavirus live virus neutralization test was used to detect the neutralizing antibodies in the plasma of 181 recovered patients. ResultsThe IgG positive rate was 92.27% (167/181) in COVID-19 patients six months after discharge, while the lgM positive rate was 28.18% (51/181). Six months after hospital discharge, 117 recovered patients (64.64%) were positive for IgG antibodies and negative for IgM antibodies, indicating that they had produced stable antibodies. This result suggested that they had been infected with the new coronavirus (SARS-CoV-2) and were in the recovery stage. The positive detection rate of neutralizing antibodies was as high as 91.71%. ConclusionSix months after infection with SARS-CoV-2, IgG antibodies produced in the patients continue to exist, and the neutralizing antibodies maintain a high and stable level. Results of this study have important guiding significance for future research on the durability of new coronavirus antibodies.

SELECTION OF CITATIONS
SEARCH DETAIL