Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters











Publication year range
1.
Angew Chem Int Ed Engl ; : e202409421, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136328

ABSTRACT

Realizing high-rate and high-capacity features of Lihium-organic batteries is essential for their practical use but remains a big challenge, which is due to the instrinsic poor conductivity, limited redox kinetics and low utility of organic electrode mateials. This work presents a well-designed donor-acceptor Covalent Organic Framework (COFs) with extended conjugation, mesoscale porosity, and dual redox-active centers to promote fast charge transfer and multi-electron processes. As anticipated, the prepared cathode with benzo [1,2-b:3,4-b':5,6-b''] trithiophene (BTT) as p-type and pyrene-4,5,9,10-tetraone (PTO) as n-type material (BTT-PTO-COF) delivers impressive specific capacity (218 mAh g-1 and 275 mAh g-1 at 0.2 A g-1 in ether-based and carbonate-based electrolyte respectively) and outstanding rate capability (79 mAh g-1 at 50 A g-1 in ether-based electrolyte and 124 mAh g-1 at 10 A g-1 in carbonate-based electrolyte). Moreover, the potential of BTT-PTO-COF electrode for prototype batteries has been demonstrated by full cells of dual-ion batteries, which attain comparable electrochemical performances to the half cells. Moreover, mechanism studies combining ex-situ characterization and theoratical calculations reveal the efficient dual-ion storage process and facile charge transfer of BTT-PTO-COF. This work not only expands the diversity of redox-active COFs but also provide concept of structure design for high-rate and high-capacity organic electrodes.

2.
Nanomicro Lett ; 16(1): 194, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743294

ABSTRACT

Aqueous zinc-ion batteries (AZIBs) are one of the most compelling alternatives of lithium-ion batteries due to their inherent safety and economics viability. In response to the growing demand for green and sustainable energy storage solutions, organic electrodes with the scalability from inexpensive starting materials and potential for biodegradation after use have become a prominent choice for AZIBs. Despite gratifying progresses of organic molecules with electrochemical performance in AZIBs, the research is still in infancy and hampered by certain issues due to the underlying complex electrochemistry. Strategies for designing organic electrode materials for AZIBs with high specific capacity and long cycling life are discussed in detail in this review. Specifically, we put emphasis on the unique electrochemistry of different redox-active structures to provide in-depth understanding of their working mechanisms. In addition, we highlight the importance of molecular size/dimension regarding their profound impact on electrochemical performances. Finally, challenges and perspectives are discussed from the developing point of view for future AZIBs. We hope to provide a valuable evaluation on organic electrode materials for AZIBs in our context and give inspiration for the rational design of high-performance AZIBs.

3.
Adv Sci (Weinh) ; 11(23): e2310239, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38582519

ABSTRACT

Rationally designed organic redox-active materials have attracted numerous interests due to their excellent electrochemical performance and reasonable sustainability. However, they often suffer from poor cycling stability, intrinsic low operating potential, and poor rate performance. Herein, a novel Donor-Acceptor (D-A) bipolar polymer with n-type pyrene-4,5,9,10-tetraone unit storing Li cations and p-type carbazole unit which attracts anions and provides polymerization sites is employed as a cathode for lithium-ion batteries through in situ electropolymerization. The multiple redox reactions and boosted kinetics by the D-A structure lead to excellent electrochemical performance of a high discharge capacity of 202 mA h g-1 at 200 mA g-1, impressive working potential (2.87 and 4.15 V), an outstanding rate capability of 119 mA h g-1 at 10 A g-1 and a noteworthy energy density up to 554 Wh kg-1. This strategy has significant implications for the molecule design of bipolar organic cathode for high cycling stability and high energy density.

4.
ChemSusChem ; 17(4): e202301809, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38230562

ABSTRACT

Dual-ion batteries based on organic electrodes show great potential to break through the bottlenecks existed in conventional LIBs due to their high specific capacity, lifted working voltage, and environmental benignity. Herein, two innovative viologen-based bipolar copolymers poly(viologen-pyrene-4,5,9,10-tetrone dichloride) (PVPTOCl2 ) and poly(viologen-anthraquinone dichloride) (PVAQCl2 ) were synthesized and applied as high performance cathodes for lithium-dual-ion battery. Bearing the dual-ion storage capability of viologen and carbonyls, as well as the conjugated structure of pyrene-4,5,9,10-tetrone, the synthesized copolymers show remarkable electrochemical performances for LIBs. Compared to PVAQCl2 , PVPTOCl2 shows superior electrochemical performance with high initial specific capacity (235.0 mAh g-1 at 200 mA g-1 ), high reversibility (coulombic efficiency up to 99.96 % at 1 A g-1 ), excellent rate performance (150.3 mAh g-1 at 5 A g-1 ) and outstanding cycling stability (a reversible capacity of 197.5 mAh g-1 at a current density of 1 A g-1 and a low capacity loss per cycle of 0.11‰ during 3000 cycles). Moreover, the charge storage mechanism was systematically investigated by ex-situ FT-IR, ex-situ XPS and DFT calculations. The results clearly reveal the structure-property relationship of the bipolar-molecules, providing a new platform to develop efficient bipolar materials for dual-ion batteries.

5.
ACS Appl Mater Interfaces ; 15(41): 48623-48631, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37807243

ABSTRACT

Thermosensitive microgels based on poly(N-isopropylacrylamide) (PNIPAm) have been widely used to create nanoreactors with controlled catalytic activity through the immobilization of metal nanoparticles (NPs). However, traditional approaches with metal NPs located only in the polymer network rely on electric heating to initiate the reaction. In this study, we developed a photothermal-responsive yolk-shell nanoreactor with a tunable location of metal NPs. The catalytic performance of these nanoreactors can be controlled by both light irradiation and conventional heating, that is, electric heating. Interestingly, the location of the catalysts had a significant impact on the reduction kinetics of the nanoreactors; catalysts in the shell exhibited higher catalytic activity compared with those in the core, under conventional heating. When subjected to light irradiation, nanoreactors with catalysts loaded in the core demonstrated improved catalytic performance compared to direct heating, while nanoreactors with catalysts in the shell exhibited relatively similar activity. We attribute this enhancement in catalytic activity to the spatial distribution of the catalysts and the localized heating within the polydopamine cores of the nanoreactors. This research presents exciting prospects for the design of innovative smart nanoreactors and efficient photothermal-assisted catalysis.

6.
ACS Nano ; 17(3): 2245-2256, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36648413

ABSTRACT

A protein assembly with the ability to switch interplay modes of multiple driving forces has been achieved. Although biomolecular systems driven by multiple driving forces have been exploited, work on such a protein assembly capable of switching the interplay modes at nanoscale has been rarely reported so far as a result of their great fabrication challenge. In this work, two sets of driving forces such as ligand-ligand interaction and protein-protein interaction were leveraged to antagonistically underpin the multilayered stackings and trigger the hollow evolution to afford the well-defined hollow rectangular frame of proteins. While these protein frames further collapsed into aggregates, the ligand-ligand interactions were weakened, and the interplay of two sets of driving forces thereby tended to switch into synergistic mode, converting the protein packing mode from porously loose packing to axially dense packing and thus giving rise to a morphological evolution toward a nanosized protein tube. This strategy not only provides a nanoscale understanding on the mechanism underlying the switch of interplay modes in the context of biomacromolecules but also may provide access for diverse sophisticated biomacromolecular nanostructures that are historically inaccessible for conventional self-assembly strategies.


Subject(s)
Nanostructures , Proteins , Ligands , Proteins/chemistry , Nanostructures/chemistry
7.
ChemSusChem ; 15(14): e202200434, 2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35524709

ABSTRACT

Herein, the concept of constructing binder- and carbon additive-free organosulfur cathode was proved based on thiol-containing conducting polymer poly(4-(thiophene-3-yl) benzenethiol) (PTBT). The PTBT featured the polythiophene-structure main chain as a highly conducting framework and the benzenethiol side chain to copolymerize with sulfur and form a crosslinked organosulfur polymer (namely S/PTBT). Meanwhile, it could be in-situ deposited on the current collector by electro-polymerization, making it a binder-free and free-standing cathode for Li-S batteries. The S/PTBT cathode exhibited a reversible capacity of around 870 mAh g-1 at 0.1 C and improved cycling performance compared to the physically mixed cathode (namely S&PTBT). This multifunction cathode eliminated the influence of the additives (carbon/binder), making it suitable to be applied as a model electrode for operando analysis. Operando X-ray imaging revealed the remarkable effect in the suppression of polysulfides shuttle via introducing covalent bonds, paving the way for the study of the intrinsic mechanisms in Li-S batteries.

8.
Nanoscale ; 14(18): 6888-6901, 2022 May 16.
Article in English | MEDLINE | ID: mdl-35446331

ABSTRACT

Advanced catalysis triggered by photothermal conversion effects has aroused increasing interest due to its huge potential in environmental purification. In this work, we developed a novel approach to the fast degradation of 4-nitrophenol (4-Nip) using porous MoS2 nanoparticles as catalysts, which integrate the intrinsic catalytic property of MoS2 with its photothermal conversion capability. Using assembled polystyrene-b-poly(2-vinylpyridine) block copolymers as soft templates, various MoS2 particles were prepared, which exhibited tailored morphologies (e.g., pomegranate-like, hollow, and open porous structures). The photothermal conversion performance of these featured particles was compared under near-infrared (NIR) light irradiation. Intriguingly, when these porous MoS2 particles were further employed as catalysts for the reduction of 4-Nip, the reaction rate constant was increased by a factor of 1.5 under NIR illumination. We attribute this catalytic enhancement to the open porous architecture and light-to-heat conversion performance of the MoS2 particles. This contribution offers new opportunities for efficient photothermal-assisted catalysis.

9.
J Mater Chem C Mater ; 10(2): 688-695, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-35127099

ABSTRACT

Collaborative therapy is regarded as an effective approach in increasing the therapeutic efficacy of cancer. In this work, we have proposed and validated the concept of upconversion lumienscence image guided synergy of photodynamic therapy (PDT) and radiotherapy (RT) for deep cancer, via a specially designed nanoplatform integrating near infrared (NIR) light activated luminescence upconversion and X-ray induced scintillation. Upon NIR light irradiation, the nanoplatform emits highly monochromatic red light solely for imaging the targeted cancer cells without triggering therapy; however, when the irradiation turns to a low dose of X-rays, scintillation will occur which induces effectively the PDT destroying the cancer cells together with X-ray induced RT. The novel theranostic nanoplatform is constructed in such a way that the interactions between the upconversion core and the outmost scintillating shell are blocked effectively by an inert layer between them. This structural design not only enables a nearly perfect excitation energy delivery (∼100% at a spectral overlapping wavelength of ∼540 nm) from the outermost scintellating layer to the surface-anchored photosensitizers and so a maximum yield of radical oxygen species, but also achieves a strong NIR induced upconversion luminescence for imaging. Since PDT and RT attack different parts of a cancer cell, this synergy is more effective in destroying cancer than a single therapy, resulting in the reduction of the X-ray irradiation dosage. As a proof of principle, the theranostic effect is validated by in vitro and in vivo experiments, exhibiting the great potential of this sort of nanoplatform in deep cancer treatment.

10.
ACS Appl Mater Interfaces ; 13(3): 3979-3990, 2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33427459

ABSTRACT

"Water-in-salt" (WIS) electrolytes have emerged as an excellent superconcentrated ionic medium for high-power energy storage systems such as supercapacitors due to their extended working potential compared to the conventional dilute aqueous electrolyte. In this work, we have investigated the performance of WIS supercapacitors using hollow carbon nanoplates as electrodes and compared it to that based on the conventional "salt-in-water" electrolytes. Moreover, the potentiostatic electrochemical impedance spectroscopy has been employed to provide an insightful look into the charge transport properties, which also, for the first time, reveals the formation of a solid-electrolyte interphase (SEI) and their temperature-dependent impedance for charge transfer and adsorption. Furthermore, the effect of temperature on the electrochemical performance of the WIS supercapacitors in the temperature range from 15 to 60 °C has been studied, which presents a gravimetric capacitance of 128 F g-1 and a volumetric capacitance of 197.12 F cm-3 at 55 °C compared to 87.5 F g-1 and 134.75 F cm-3 at 15 °C. The in-depth understanding about the formation of SEI layer and the electrochemical performance at different temperatures for WIS supercapacitors will assist the efforts toward designing better aqueous electrolytes for supercapacitors.

11.
ChemSusChem ; 14(5): 1404-1413, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33440068

ABSTRACT

Numerous nanostructured materials have been reported as efficient sulfur hosts to suppress the problematic "shuttling" of lithium polysulfides (LiPSs) in lithium-sulfur (Li-S) batteries. However, direct comparison of these materials in their efficiency of suppressing LiPSs shuttling is challenging, owing to the structural and morphological differences between individual materials. This study introduces a simple route to synthesize a series of sulfur host materials with the same yolk-shell nanospindle morphology but tunable compositions (Fe3 O4 , FeS, or FeS2 ), which allows for a systematic investigation into the specific effect of chemical composition on the electrochemical performances of Li-S batteries. Among them, the S/FeS2 -C electrode exhibits the best performance and delivers an initial capacity of 877.6 mAh g-1 at 0.5 C with a retention ratio of 86.7 % after 350 cycles. This approach can also be extended to the optimization of materials for other functionalities and applications.

12.
Chem Rev ; 120(17): 9363-9419, 2020 09 09.
Article in English | MEDLINE | ID: mdl-32786418

ABSTRACT

Heteroatom-doped porous carbon materials (HPCMs) have found extensive applications in adsorption/separation, organic catalysis, sensing, and energy conversion/storage. The judicious choice of carbon precursors is crucial for the manufacture of HPCMs with specific usages and maximization of their functions. In this regard, polymers as precursors have demonstrated great promise because of their versatile molecular and nanoscale structures, modulatable chemical composition, and rich processing techniques to generate textures that, in combination with proper solid-state chemistry, can be maintained throughout carbonization. This Review comprehensively surveys the progress in polymer-derived functional HPCMs in terms of how to produce and control their porosities, heteroatom doping effects, and morphologies and their related use. First, we summarize and discuss synthetic approaches, including hard and soft templating methods as well as direct synthesis strategies employing polymers to control the pores and/or heteroatoms in HPCMs. Second, we summarize the heteroatom doping effects on the thermal stability, electronic and optical properties, and surface chemistry of HPCMs. Specifically, the heteroatom doping effect, which involves both single-type heteroatom doping and codoping of two or more types of heteroatoms into the carbon network, is discussed. Considering the significance of the morphologies of HPCMs in their application spectrum, potential choices of suitable polymeric precursors and strategies to precisely regulate the morphologies of HPCMs are presented. Finally, we provide our perspective on how to predefine the structures of HPCMs by using polymers to realize their potential applications in the current fields of energy generation/conversion and environmental remediation. We believe that these analyses and deductions are valuable for a systematic understanding of polymer-derived carbon materials and will serve as a source of inspiration for the design of future HPCMs.

13.
Chem Sci ; 11(45): 12269-12281, 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-34094435

ABSTRACT

Polydopamine (PDA)-based nanoreactors have shown exceptional promise as multifunctional materials due to their nanoscale dimensions and sub-microliter volumes for reactions of different systems. Biocompatibility, abundance of active sites, and excellent photothermal conversion have facilitated their extensive use in bioscience and energy storage/conversion. This minireview summarizes recent advances in PDA-based nanoreactors, as applied to the abovementioned fields. We first highlight the design and synthesis of functional PDA-based nanoreactors with structural and compositional diversity. Special emphasis in bioscience has been given to drug/protein delivery, photothermal therapy, and antibacterial properties, while for energy-related applications, the focus is on electrochemical energy storage, catalysis, and solar energy harvesting. In addition, perspectives on pressing challenges and future research opportunities regarding PDA-based nanoreactors are discussed.

14.
Chemistry ; 25(18): 4757-4766, 2019 Mar 27.
Article in English | MEDLINE | ID: mdl-30698867

ABSTRACT

MoS2 , a typical layered transition-metal dichalcogenide, is promising as an electrode material in supercapacitors. However, its low electrical conductivity could lead to limited capacitance if applied in electrochemical devices. Herein, a new nanostructure composed of hollow carbon-MoS2 -carbon was successfully synthesized through an l-cysteine-assisted hydrothermal method by using gibbsite as a template and polydopamine as a carbon precursor. After calcination and etching of the gibbsite template, uniform hollow platelets, which were made of a sandwich-like assembly of partial graphitic carbon and two-dimensional layered MoS2 flakes, were obtained. The platelets showed excellent dispersibility and stability in water, and good electrical conductivity due to carbon provided by the calcination of polydopamine coatings. The hollow nanoplate morphology of the material provided a high specific surface area of 543 m2 g-1 , a total pore volume of 0.677 cm3 g-1 , and fairly small mesopores (≈5.3 nm). The material was applied in a symmetric supercapacitor and exhibited a specific capacitance of 248 F g-1 (0.12 F cm-2 ) at a constant current density of 0.1 A g-1 ; thus suggesting that hollow carbon-MoS2 -carbon nanoplates are promising candidate materials for supercapacitors.

15.
Nanomicro Lett ; 11(1): 41, 2019 May 16.
Article in English | MEDLINE | ID: mdl-34137989

ABSTRACT

In past decades, Ni-based catalytic materials and electrodes have been intensively explored as low-cost hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) catalysts for water splitting. With increasing demands for Ni worldwide, simplifying the fabrication process, increasing Ni recycling, and reducing waste are tangible sustainability goals. Here, binder-free, heteroatom-free, and recyclable Ni-based bifunctional catalytic electrodes were fabricated via a one-step quick electrodeposition method. Typically, active Ni nanodot (NiND) clusters are electrodeposited on Ni foam (NF) in Ni(NO3)2 acetonitrile solution. After drying in air, NiO/NiND composites are obtained, leading to a binder-free and heteroatom-free NiO/NiNDs@NF catalytic electrode. The electrode shows high efficiency and long-term stability for catalyzing hydrogen and oxygen evolution reactions at low overpotentials (10ηHER = 119 mV and 50ηOER = 360 mV) and can promote water catalysis at 1.70 V@10 mA cm-2. More importantly, the recovery of raw materials (NF and Ni(NO3)2) is quite easy because of the solubility of NiO/NiNDs composites in acid solution for recycling the electrodes. Additionally, a large-sized (S ~ 70 cm2) NiO/NiNDs@NF catalytic electrode with high durability has also been constructed. This method provides a simple and fast technology to construct high-performance, low-cost, and environmentally friendly Ni-based bifunctional electrocatalytic electrodes for water splitting.

16.
Nanomicro Lett ; 11(1): 83, 2019 Oct 10.
Article in English | MEDLINE | ID: mdl-34138056

ABSTRACT

Photothermal conversion (PTC) nanostructures have great potential for applications in many fields, and therefore, they have attracted tremendous attention. However, the construction of a PTC nanoreactor with multi-compartment structure to achieve the combination of unique chemical properties and structural feature is still challenging due to the synthetic difficulties. Herein, we designed and synthesized a catalytically active, PTC gold (Au)@polydopamine (PDA) nanoreactor driven by infrared irradiation using assembled PS-b-P2VP nanosphere as soft template. The particles exhibit multi-compartment structure which is revealed by 3D electron tomography characterization technique. They feature permeable shells with tunable shell thickness. Full kinetics for the reduction reaction of 4-nitrophenol has been investigated using these particles as nanoreactors and compared with other reported systems. Notably, a remarkable acceleration of the catalytic reaction upon near-infrared irradiation is demonstrated, which reveals for the first time the importance of the synergistic effect of photothermal conversion and complex inner structure to the kinetics of the catalytic reduction. The ease of synthesis and fresh insights into catalysis will promote a new platform for novel nanoreactor studies.

17.
ACS Macro Lett ; 8(10): 1372-1377, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-35651167

ABSTRACT

Linear main-chain 1,2,4-triazolium-based poly(ionic liquid)s (PILs) were synthesized in this contribution. The polymerization process is experimentally very simple and involves only a single-step polycondensation of a commercially available monomer in DMSO as solvent at 120 °C. Their thermal stability and solubility were analyzed in terms of different counteranions. Due to the ease of this synthetic route, it was readily applied to graft onto sulfonated cellulose nanocrystals (CNCs) via a one-step in situ polymerization. The as-synthesized PIL@CNC hybrid colloids exhibit adaptive dispensability in water and organic solvents.

18.
Langmuir ; 31(34): 9483-91, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26266398

ABSTRACT

We report a facile method to synthesize anisotropic platelike gibbsite-polymer core-shell particles. Dopamine is self-polymerized on the surface of gibbsite nanoplates and forms a homogeneous layer on it. Transmission electron microscopy characterization of the resulting latexes demonstrates the formation of well-defined platelike core-shell particles. Reaction time and ultrasonification are found to be important factors to control the thickness of the polymer shell and avoid aggregation. Good control over the platelike morphology and 100% encapsulation efficiency have been achieved via this novel route. The resulting well-defined gibbsite-polydamine (G-PDA) core-shell nanoplates show excellent colloidal stability and can form opal-like columnar crystal with iridescent Bragg reflection after modest centrifugation. In addition, G-PDA core-shell nanoplates can serve both as reductant and stabilizer for the generation of Au nanoparticles (NPs) in situ. Au NPs with tunable size have been formed on the G-PDA particle surface, which show efficient catalytic activity for the reduction of 4-nitrophenol and Rhodamine B (RhB) in the presence of borohydride. Such nanocatalysts can be easily deposited on silicon substrate by spin-coating due to the large contact area of platelike G-PDA particles and the strong adhesive behavior of the PDA layer. The substrate-deposited nanocatalyst can be easily recycled which show excellent reusability for the reduction of RhB.


Subject(s)
Gold/chemistry , Indoles/chemistry , Metal Nanoparticles/chemistry , Nanocomposites/chemistry , Polymers/chemistry , Anisotropy , Catalysis , Particle Size , Surface Properties
19.
Langmuir ; 29(14): 4640-6, 2013 Apr 09.
Article in English | MEDLINE | ID: mdl-23506093

ABSTRACT

Swelling of block copolymers is a complex process in which deformation and microphase separation couple together. Here we demonstrated that nanoparticles of block copolymers and polymer composites which have a large variety of phase separation patterns and different shapes can be generated through swelling process. Particularly, we focused on the swelling process of lamellae-forming diblock copolymer nanoparticles and first observed the formation of terrace edges in diblock copolymer nanoparticles as a metastable microstructure in swelling. Moreover, the trace amount of swelling solvent shows a significant influence on the shape of polymer nanoparticles, leading to block copolymer nanodisks and snowman-like composite nanoparticles.

20.
Small ; 9(2): 322-9, 2013 Jan 28.
Article in English | MEDLINE | ID: mdl-23047432

ABSTRACT

Block-copolymer (BCP) nanospheres with hierarchical inner structure are of great interest and importance due to their possible applications in nanotechnology and biomedical engineering. Mesoporous BCP nanospheres with multilayered inner channels are considered as potential drug-delivery systems and templates for multifunctional nanomaterials. Selective swelling is a facile pore-making strategy for BCP materials. Herein, the selective swelling-induced reconstruction of BCP nanospheres is reported. Two poly(styrene-block-2-vinylpyridine) (PS-b-P2VP) samples with different compositions (PS(23600)-b-P2VP(10400) and PS(27700)-b-P2VP(4300)) are used as model systems. The swelling reconstruction of PS-b-P2VP in ethanol, 1-pyrenebutyric acid (PBA)/ethanol, or HCl/ethanol (pH = 2.61) is characterized by scanning electron microscopy and transmission electron microscopy. It is observed that the length of the swellable block in BCP is a critical factor in determining the behavior and nanostructures of mesoporous BCP nanospheres in selective swelling. Moreover, it is demonstrated that the addition of PBA modifies the swelling structure of PS(23600)-b-P2VP(10400) through the interaction between PBA and P2VP blocks, which results in BCP nanospheres with patterned pores of controllable size. The patterned pores can be reversibly closed by annealing the mesoporous BCP nanospheres in different selective solvents. The controllable and reversible open/closed reconstruction of BCP nanospheres can be used to enclose functional nanoparticles or drugs inside the nanospheres. These mesoporous BCP nanospheres are further decorated with gold nanoparticles by UV photoreduction. The enlarged decoration area in mesoporous BCP nanospheres will enhance their activity and sensitivity as a catalyst and electrochemical sensor.

SELECTION OF CITATIONS
SEARCH DETAIL