Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Cancer Discov ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39028915

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is an increasingly diagnosed cancer that kills 90% of afflicted patients, with most patients receiving palliative chemotherapy. We identified neuronal pentraxin 1 (NPTX1) as a cancer secreted protein that becomes over-expressed in human and murine PDAC cells during metastatic progression and identified adhesion molecule with Ig like domain 2 (AMIGO2) as its receptor. Molecular, genetic, biochemical and pharmacologic experiments revealed that secreted NPTX1 acts cell-autonomously on the AMIGO2 receptor to drive PDAC metastatic colonization of the liver-the primary site of PDAC metastasis. NPTX1-AMIGO2 signaling enhanced hypoxic growth and was critically required for hypoxia induced factor-1a (HIF1a) nuclear retention and function. NPTX1 is over-expressed in human PDAC tumors and upregulated in liver metastases. Therapeutic targeting of NPTX1 with a high-affinity monoclonal antibody substantially reduced PDAC liver metastatic colonization. We thus identify NPTX1-AMIGO2 as druggable critical upstream regulators of the HIF1a hypoxic response in PDAC.

2.
Cancer Res ; 83(18): 3013-3025, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37335131

ABSTRACT

The secreted lipid transporter apolipoprotein E (APOE) plays important roles in atherosclerosis and Alzheimer's disease and has been implicated as a suppressor of melanoma progression. The APOE germline genotype predicts human melanoma outcomes, with APOE4 and APOE2 allele carriers exhibiting prolonged and reduced survival, respectively, relative to APOE3 homozygotes. While the APOE4 variant was recently shown to suppress melanoma progression by enhancing antitumor immunity, further work is needed to fully characterize the melanoma cell-intrinsic effects of APOE variants on cancer progression. Using a genetically engineered mouse model, we showed that human germline APOE genetic variants differentially modulate melanoma growth and metastasis in an APOE2>APOE3>APOE4 manner. The low-density lipoprotein receptor-related protein 1 (LRP1) receptor mediated the cell-intrinsic effects of APOE variants on melanoma progression. Protein synthesis was a tumor cell-intrinsic process differentially modulated by APOE variants, with APOE2 promoting translation via LRP1. These findings reveal a gain-of-function role for the APOE2 variant in melanoma progression, which may aid in predicting melanoma patient outcomes and understanding the protective effect of APOE2 in Alzheimer's disease. SIGNIFICANCE: APOE germline variants impact melanoma progression through disparate mechanisms, such as the protein synthesis-promoting function of the APOE2 variant, indicating that germline genetic variants are causal contributors to metastatic outcomes.


Subject(s)
Alzheimer Disease , Melanoma , Animals , Humans , Mice , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Apolipoprotein E2/genetics , Apolipoprotein E2/metabolism , Apolipoprotein E3/genetics , Apolipoprotein E3/metabolism , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Carrier Proteins , Melanoma/genetics
3.
Mol Cell ; 82(14): 2604-2617.e8, 2022 07 21.
Article in English | MEDLINE | ID: mdl-35654044

ABSTRACT

Stress-induced cleavage of transfer RNAs (tRNAs) into tRNA-derived fragments (tRFs) occurs across organisms from yeast to humans; yet, its mechanistic underpinnings and pathological consequences remain poorly defined. Small RNA profiling revealed increased abundance of a cysteine tRNA fragment (5'-tRFCys) during breast cancer metastatic progression. 5'-tRFCys was required for efficient breast cancer metastatic lung colonization and cancer cell survival. We identified Nucleolin as the direct binding partner of 5'-tRFCys. 5'-tRFCys promoted the oligomerization of Nucleolin and its bound metabolic transcripts Mthfd1l and Pafah1b1 into a higher-order transcript stabilizing ribonucleoprotein complex, which protected these transcripts from exonucleolytic degradation. Consistent with this, Mthfd1l and Pafah1b1 mediated pro-metastatic and metabolic effects downstream of 5'-tRFCys-impacting folate, one-carbon, and phosphatidylcholine metabolism. Our findings reveal that a tRF can promote oligomerization of an RNA-binding protein into a transcript stabilizing ribonucleoprotein complex, thereby driving specific metabolic pathways underlying cancer progression.


Subject(s)
Breast Neoplasms , RNA, Transfer , Breast Neoplasms/genetics , Female , Humans , Phosphoproteins , RNA, Messenger/genetics , RNA, Transfer/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Ribonucleoproteins/genetics , Nucleolin
4.
Cell ; 185(4): 729-745.e20, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35063085

ABSTRACT

Brain metastasis (BrM) is the most common form of brain cancer, characterized by neurologic disability and an abysmal prognosis. Unfortunately, our understanding of the biology underlying human BrMs remains rudimentary. Here, we present an integrative analysis of >100,000 malignant and non-malignant cells from 15 human parenchymal BrMs, generated by single-cell transcriptomics, mass cytometry, and complemented with mouse model- and in silico approaches. We interrogated the composition of BrM niches, molecularly defined the blood-tumor interface, and revealed stromal immunosuppressive states enriched with infiltrated T cells and macrophages. Specific single-cell interrogation of metastatic tumor cells provides a framework of 8 functional cell programs that coexist or anticorrelate. Collectively, these programs delineate two functional BrM archetypes, one proliferative and the other inflammatory, that are evidently shaped through tumor-immune interactions. Our resource provides a foundation to understand the molecular basis of BrM in patients with tumor cell-intrinsic and host environmental traits.


Subject(s)
Brain Neoplasms/pathology , Brain Neoplasms/secondary , Adult , Aged , Animals , Biomarkers, Tumor/metabolism , Brain Neoplasms/blood , Brain Neoplasms/immunology , Cell Cycle , Cell Line, Tumor , Cell Proliferation , Female , Genetic Variation , Humans , Immune Evasion , Lymphocyte Activation/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Mice, Inbred BALB C , Mice, Nude , Middle Aged , Models, Biological , Myeloid Cells/pathology , Principal Component Analysis , RNA-Seq , Single-Cell Analysis , T-Lymphocytes/immunology
5.
Dev Cell ; 52(5): 591-604.e6, 2020 03 09.
Article in English | MEDLINE | ID: mdl-32084360

ABSTRACT

Although autophagy is being pursued as a therapeutic target in clinical oncology trials, its effects on metastasis, the principal cause of cancer mortality, remain unclear. Here, we utilize mammary cancer models to temporally delete essential autophagy regulators during carcinoma progression. Though genetic ablation of autophagy strongly attenuates primary mammary tumor growth, impaired autophagy promotes spontaneous metastasis and enables the outgrowth of disseminated tumor cells into overt macro-metastases. Transcriptomic analysis reveals that autophagy deficiency elicits a subpopulation of otherwise luminal tumor cells exhibiting basal differentiation traits, which is reversed upon preventing accumulation of the autophagy cargo receptor, Neighbor to BRCA1 (NBR1). Furthermore, pharmacological and genetic induction of autophagy suppresses pro-metastatic differentiation and metastatic outgrowth. Analysis of human breast cancer data reveal that autophagy gene expression inversely correlates with pro-metastatic differentiation signatures and predicts overall and distant metastasis-free survival. Overall, these findings highlight autophagy-dependent control of NBR1 as a key determinant of metastatic progression.


Subject(s)
Autophagy , Intracellular Signaling Peptides and Proteins/metabolism , Mammary Neoplasms, Experimental/metabolism , Animals , Cells, Cultured , Female , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , MCF-7 Cells , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Inbred C57BL , Neoplasm Metastasis , Transcriptome
6.
Plant Genome ; 11(3)2018 11.
Article in English | MEDLINE | ID: mdl-30512038

ABSTRACT

White clover ( L.) is the most important grazing perennial forage legume in temperate climates. However, its limited capacity to survive and restore growth after low temperatures during winter constrains the productivity and wide adoption of the crop. Despite the importance of cold tolerance for white clover cultivar development, the genetic basis of this trait remains largely unknown. Hence, in this study, we performed the first genome-wide association study (GWAS) analyses in white clover to identify quantitative trait loci (QTL) for cold-tolerance-related traits. Seeds from 192 divergent genotypes from six populations in the Patagonia region of South America were collected and seed-derived plants were further clonally propagated. Clonal trials were established in three locations representing temperature gradient associated with elevation. Given the allotetraploid nature of the white clover genome, distinct genetic models (diploid and tetraploid) were tested. Only the tetraploid parameterization was able to detect the 53 loci associated with cold-tolerance traits. Out of the 53 single nucleotide polymorphism (SNP) trait associations, 17 controlled more than one trait or were stable across multiple sites. This work represents the first report of QTL for cold-tolerance-related traits, providing insights into its genetic basis and candidate genomic regions for further functional validation studies.


Subject(s)
Acclimatization , Trifolium/physiology , Cold Temperature , Genes, Plant , Genetic Markers , Genetics, Population , Genome-Wide Association Study , Genotype , Linkage Disequilibrium , Phenotype , Quantitative Trait Loci , Trifolium/genetics
7.
Nat Genet ; 50(9): 1282-1288, 2018 09.
Article in English | MEDLINE | ID: mdl-30061736

ABSTRACT

The maize W22 inbred has served as a platform for maize genetics since the mid twentieth century. To streamline maize genome analyses, we have sequenced and de novo assembled a W22 reference genome using short-read sequencing technologies. We show that significant structural heterogeneity exists in comparison to the B73 reference genome at multiple scales, from transposon composition and copy number variation to single-nucleotide polymorphisms. The generation of this reference genome enables accurate placement of thousands of Mutator (Mu) and Dissociation (Ds) transposable element insertions for reverse and forward genetics studies. Annotation of the genome has been achieved using RNA-seq analysis, differential nuclease sensitivity profiling and bisulfite sequencing to map open reading frames, open chromatin sites and DNA methylation profiles, respectively. Collectively, the resources developed here integrate W22 as a community reference genome for functional genomics and provide a foundation for the maize pan-genome.


Subject(s)
DNA Transposable Elements/genetics , Genes, Plant/genetics , Genome, Plant/genetics , Zea mays/genetics , Chromatin/genetics , Chromosomes, Plant/genetics , DNA Copy Number Variations/genetics , DNA Methylation/genetics , DNA, Plant/genetics , Genomics/methods , Open Reading Frames/genetics , Sequence Analysis, DNA/methods
8.
Am J Bot ; 105(9): 1531-1544, 2018 09.
Article in English | MEDLINE | ID: mdl-30157290

ABSTRACT

PREMISE OF THE STUDY: Conifers are an important living seed plant lineage with an extensive fossil record spanning more than 300 million years. The group therefore provides an excellent opportunity to explore congruence and conflict between dated molecular phylogenies and the fossil record. METHODS: We surveyed the current state of knowledge in conifer phylogenetics to present a new time-calibrated molecular tree that samples ~90% of extant species diversity. We compared phylogenetic relationships and estimated divergence ages in this new phylogeny with the paleobotanical record, focusing on clades that are species-rich and well known from fossils. KEY RESULTS: Molecular topologies and estimated divergence ages largely agree with the fossil record in Cupressaceae, conflict with it in Araucariaceae, and are ambiguous in Pinaceae and Podocarpaceae. Molecular phylogenies provide insights into some fundamental questions in conifer evolution, such as the origin of their seed cones, but using them to reconstruct the evolutionary history of specific traits can be challenging. CONCLUSIONS: Molecular phylogenies are useful for answering deep questions in conifer evolution if they depend on understanding relationships among extant lineages. Because of extinction, however, molecular datasets poorly sample diversity from periods much earlier than the Late Cretaceous. This fundamentally limits their utility for understanding deep patterns of character evolution and resolving the overall pattern of conifer phylogeny.


Subject(s)
Fossils , Tracheophyta , Biodiversity , Biological Evolution , Fossils/anatomy & histology , Phylogeny , Tracheophyta/anatomy & histology , Tracheophyta/genetics , Tracheophyta/physiology
9.
Circ Genom Precis Med ; 11(4): e001854, 2018 04.
Article in English | MEDLINE | ID: mdl-29650764

ABSTRACT

BACKGROUND: Plasma renin is an important regulator of blood pressure (BP). Plasma renin activity (PRA) has been shown to correlate with variability in BP response to antihypertensive agents. We conducted a genome-wide association study to identify single-nucleotide polymorphisms (SNPs) associated with baseline PRA using data from the PEAR study (Pharmacogenomic Evaluation of Antihypertensive Responses). METHODS: Multiple linear regression analysis was performed in 461 whites and 297 blacks using an additive model, adjusting for age, sex, and ancestry-specific principal components. Top SNPs were prioritized by testing the expected direction of association for BP response to atenolol and hydrochlorothiazide. Top regions from the BP response prioritization were tested for functional evidence through differences in gene expression by genotype using RNA sequencing data. Regions with functional evidence were assessed for replication with baseline PRA in an independent study (PEAR-2). RESULTS: Our top SNP rs3784921 was in the SNN-TXNDC11 gene region. The G allele of rs3784921 was associated with higher baseline PRA (ß=0.47; P=2.09×10-6) and smaller systolic BP reduction in response to hydrochlorothiazide (ß=2.97; 1-sided P=0.006). In addition, TXNDC11 expression differed by rs3784921 genotype (P=0.007), and rs1802409, a proxy SNP for rs3784921 (r2=0.98-1.00), replicated in PEAR-2 (ß=0.15; 1-sided P=0.038). Additional SNPs associated with baseline PRA that passed BP response prioritization were in/near the genes CHD9, XIRP2, and GHR. CONCLUSIONS: We identified multiple regions associated with baseline PRA that were prioritized through BP response signals to 2 mechanistically different antihypertensive drugs. CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov. Unique identifier: NCT00246519.


Subject(s)
Antihypertensive Agents/therapeutic use , Atenolol/therapeutic use , Blood Pressure/drug effects , Hydrochlorothiazide/therapeutic use , Hypertension/drug therapy , Pharmacogenomic Variants , Polymorphism, Single Nucleotide , Renin/blood , Adolescent , Adult , Aged , Blood Pressure/genetics , Genome-Wide Association Study , Humans , Hypertension/blood , Hypertension/genetics , Hypertension/physiopathology , Male , Middle Aged , Prospective Studies , Renin/genetics , Treatment Outcome , United States , Young Adult
11.
Curr Biol ; 27(17): R896-R900, 2017 Sep 11.
Article in English | MEDLINE | ID: mdl-28898661

ABSTRACT

The Neolithic Revolution brought about the transition from hunting and gathering to sedentary societies, laying the foundation for the development of modern civilizations. The primary innovation that facilitated these changes was the domestication of plants and animals. In the case of plants, this involved the cultivation and selection of individuals with larger edible parts, easier harvesting, and decreased defenses, traits that allowed for the production of a food surplus and occupational specialization. Plant domestication is a process which started approximately 10,000 years ago and has thereafter been repeated independently in many locales around the world. Here, we offer a perspective that seeks to predict what factors influence the success of domestication, how many genes contributed to the process, where these genes originated and the implications for de novo domestication.


Subject(s)
Crops, Agricultural/genetics , Domestication , Plant Breeding
12.
Genetics ; 207(2): 465-480, 2017 10.
Article in English | MEDLINE | ID: mdl-28839042

ABSTRACT

One difficulty when identifying alternative splicing (AS) events in plants is distinguishing functional AS from splicing noise. One way to add confidence to the validity of a splice isoform is to observe that it is conserved across evolutionarily related species. We use a high throughput method to identify junction-based conserved AS events from RNA-Seq data across nine plant species, including five grass monocots (maize, sorghum, rice, Brachpodium, and foxtail millet), plus two nongrass monocots (banana and African oil palm), the eudicot Arabidopsis, and the basal angiosperm Amborella In total, 9804 AS events were found to be conserved between two or more species studied. In grasses containing large regions of conserved synteny, the frequency of conserved AS events is twice that observed for genes outside of conserved synteny blocks. In plant-specific RS and RS2Z subfamilies of the serine/arginine (SR) splice-factor proteins, we observe both conservation and divergence of AS events after the whole genome duplication in maize. In addition, plant-specific RS and RS2Z splice-factor subfamilies are highly connected with R2R3-MYB in STRING functional protein association networks built using genes exhibiting conserved AS. Furthermore, we discovered that functional protein association networks constructed around genes harboring conserved AS events are enriched for phosphatases, kinases, and ubiquitylation genes, which suggests that AS may participate in regulating signaling pathways. These data lay the foundation for identifying and studying conserved AS events in the monocots, particularly across grass species, and this conserved AS resource identifies an additional layer between genotype to phenotype that may impact future crop improvement efforts.


Subject(s)
Alternative Splicing , Conserved Sequence , Evolution, Molecular , Poaceae/genetics , Arecaceae/genetics , Musa/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , Synteny
13.
Front Plant Sci ; 8: 694, 2017.
Article in English | MEDLINE | ID: mdl-28539927

ABSTRACT

Identifying and characterizing alternative splicing (AS) enables our understanding of the biological role of transcript isoform diversity. This study describes the use of publicly available RNA-Seq data to identify and characterize the global diversity of AS isoforms in maize using the inbred lines B73 and Mo17, and a related species, sorghum. Identification and characterization of AS within maize tissues revealed that genes expressed in seed exhibit the largest differential AS relative to other tissues examined. Additionally, differences in AS between the two genotypes B73 and Mo17 are greatest within genes expressed in seed. We demonstrate that changes in the level of alternatively spliced transcripts (intron retention and exon skipping) do not solely reflect differences in total transcript abundance, and we present evidence that intron retention may act to fine-tune gene expression across seed development stages. Furthermore, we have identified temperature sensitive AS in maize and demonstrate that drought-induced changes in AS involve distinct sets of genes in reproductive and vegetative tissues. Examining our identified AS isoforms within B73 × Mo17 recombinant inbred lines (RILs) identified splicing QTL (sQTL). The 43.3% of cis-sQTL regulated junctions are actually identified as alternatively spliced junctions in our analysis, while 10 Mb windows on each side of 48.2% of trans-sQTLs overlap with splicing related genes. Using sorghum as an out-group enabled direct examination of loss or conservation of AS between homeologous genes representing the two subgenomes of maize. We identify several instances where AS isoforms that are conserved between one maize homeolog and its sorghum ortholog are absent from the second maize homeolog, suggesting that these AS isoforms may have been lost after the maize whole genome duplication event. This comprehensive analysis provides new insights into the complexity of AS in maize.

14.
Genome Biol Evol ; 9(4): 1013-1029, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28444194

ABSTRACT

Plant 3R-MYB transcription factors are an important subgroup of the MYB super family in plants; however, their evolutionary history and functions remain poorly understood. We identified 225 3R-MYB proteins from 65 plant species, including algae and all major lineages of land plants. Two segmental duplication events preceding the common ancestor of angiosperms have given rise to three subgroups of the 3R-MYB proteins. Five conserved introns in the domain region of the 3R-MYB genes were identified, which arose through a step-wise pattern of intron gain during plant evolution. Alternative splicing (AS) analysis of selected species revealed that transcripts from more than 60% of 3R-MYB genes undergo AS. AS could regulate transcriptional activity for some of the plant 3R-MYBs by generating different regulatory motifs. The 3R-MYB genes of all subgroups appear to be enriched for Mitosis-Specific Activator element core sequences within their upstream promoter region, which suggests a functional involvement in cell cycle. Notably, expression of 3R-MYB genes from different species exhibits differential regulation under various abiotic stresses. These data suggest that the plant 3R-MYBs function in both cell cycle regulation and abiotic stress response, which may contribute to the adaptation of plants to a sessile lifestyle.

15.
Proc Natl Acad Sci U S A ; 114(11): E2195-E2204, 2017 03 14.
Article in English | MEDLINE | ID: mdl-28242684

ABSTRACT

RNA splicing of U12-type introns functions in human cell differentiation, but it is not known whether this class of introns has a similar role in plants. The maize ROUGH ENDOSPERM3 (RGH3) protein is orthologous to the human splicing factor, ZRSR2. ZRSR2 mutations are associated with myelodysplastic syndrome (MDS) and cause U12 splicing defects. Maize rgh3 mutants have aberrant endosperm cell differentiation and proliferation. We found that most U12-type introns are retained or misspliced in rgh3 Genes affected in rgh3 and ZRSR2 mutants identify cell cycle and protein glycosylation as common pathways disrupted. Transcripts with retained U12-type introns can be found in polysomes, suggesting that splicing efficiency can alter protein isoforms. The rgh3 mutant protein disrupts colocalization with a known ZRSR2-interacting protein, U2AF2. These results indicate conserved function for RGH3/ZRSR2 in U12 splicing and a deeply conserved role for the minor spliceosome to promote cell differentiation from stem cells to terminal fates.


Subject(s)
Genes, Plant , RNA Splicing , RNA, Small Nuclear , Zea mays/genetics , Alternative Splicing , Amino Acid Sequence , Conserved Sequence , Endosperm/genetics , Eukaryotic Cells/metabolism , Gene Expression Regulation, Plant , Humans , Introns , Mutation , Nucleotide Motifs , Phosphorylation , Position-Specific Scoring Matrices , Protein Transport , RNA Isoforms , RNA Splice Sites , Splicing Factor U2AF/genetics , Splicing Factor U2AF/metabolism , Zea mays/metabolism
16.
Mol Ecol Resour ; 17(6): 1243-1256, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28316149

ABSTRACT

Alternative splicing (AS) is a major source of transcript and proteome diversity, but examining AS in species without well-annotated reference genomes remains difficult. Research on both human and mouse has demonstrated the advantages of using Iso-Seq™ data for isoform-level transcriptome analysis, including the study of AS and gene fusion. We applied Iso-Seq™ to investigate AS in Amborella trichopoda, a phylogenetically pivotal species that is sister to all other living angiosperms. Our data show that, compared with RNA-Seq data, the Iso-Seq™ platform provides better recovery on large transcripts, new gene locus identification and gene model correction. Reference-based AS detection with Iso-Seq™ data identifies AS within a higher fraction of multi-exonic genes than observed for published RNA-Seq analysis (45.8% vs. 37.5%). These data demonstrate that the Iso-Seq™ approach is useful for detecting AS events. Using the Iso-Seq-defined transcript collection in Amborella as a reference, we further describe a pipeline for detection of AS isoforms from PacBio Iso-Seq™ without using a reference sequence (de novo). Results using this pipeline show a 66%-76% overall success rate in identifying AS events. This de novoAS detection pipeline provides a method to accurately characterize and identify bona fide alternatively spliced transcripts in any nonmodel system that lacks a reference genome sequence. Hence, our pipeline has huge potential applications and benefits to the broader biology community.


Subject(s)
Alternative Splicing , Gene Expression Profiling/methods , Genes, Plant , Magnoliopsida/genetics , Protein Isoforms/analysis , RNA, Messenger/analysis , Protein Isoforms/genetics , RNA, Messenger/genetics
17.
Mol Ecol Resour ; 15(5): 1067-78, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25611173

ABSTRACT

Obtaining accurate phylogenies and effective species discrimination using a small standardized set of plastid genes is challenging in evolutionarily young lineages. Complete plastid genome sequencing offers an increasingly easy-to-access source of characters that helps address this. The usefulness of this approach, however, depends on the extent to which plastid haplotypes track morphological species boundaries. We have tested the power of complete plastid genomes to discriminate among multiple accessions of 11 of 13 New Caledonian Araucaria species, an evolutionarily young lineage where the standard DNA barcoding approach has so far failed and phylogenetic relationships have remained elusive. Additionally, 11 nuclear gene regions were Sanger sequenced for all accessions to ascertain the success of species discrimination using a moderate number of nuclear genes. Overall, fewer than half of the New Caledonian Araucaria species with multiple accessions were monophyletic in the plastid or nuclear trees. However, the plastid data retrieved a phylogeny with a higher resolution compared to any previously published tree of this clade and supported the monophyly of about twice as many species and nodes compared to the nuclear data set. Modest gains in discrimination thus are possible, but using complete plastid genomes or a small number of nuclear genes in DNA barcoding may not substantially raise species discriminatory power in many evolutionarily young lineages. The big challenge therefore remains to develop techniques that allow routine access to large numbers of nuclear markers scaleable to thousands of individuals from phylogenetically disparate sample sets.


Subject(s)
Genome, Plastid , Phylogeny , Plastids/genetics , Sequence Analysis, DNA , Tracheophyta/classification , Tracheophyta/genetics , DNA Barcoding, Taxonomic , High-Throughput Nucleotide Sequencing , Molecular Sequence Data , Pacific Islands
18.
Am J Physiol Regul Integr Comp Physiol ; 307(12): R1471-87, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25354728

ABSTRACT

Previous studies demonstrated that in utero caffeine treatment at embryonic day (E) 8.5 alters DNA methylation patterns, gene expression, and cardiac function in adult mice. To provide insight into the mechanisms, we examined cardiac gene and microRNA (miRNA) expression in cardiomyocytes shortly after exposure to physiologically relevant doses of caffeine. In HL-1 and primary embryonic cardiomyocytes, caffeine treatment for 48 h significantly altered the expression of cardiac structural genes (Myh6, Myh7, Myh7b, Tnni3), hormonal genes (Anp and BnP), cardiac transcription factors (Gata4, Mef2c, Mef2d, Nfatc1), and microRNAs (miRNAs; miR208a, miR208b, miR499). In addition, expressions of these genes were significantly altered in embryonic hearts exposed to in utero caffeine. For in utero experiments, pregnant CD-1 dams were treated with 20-60 mg/kg of caffeine, which resulted in maternal circulation levels of 37.3-65.3 µM 2 h after treatment. RNA sequencing was performed on embryonic ventricles treated with vehicle or 20 mg/kg of caffeine daily from E6.5-9.5. Differential expression (DE) analysis revealed that 124 genes and 849 transcripts were significantly altered, and differential exon usage (DEU) analysis identified 597 exons that were changed in response to prenatal caffeine exposure. Among the DE genes identified by RNA sequencing were several cardiac structural genes and genes that control DNA methylation and histone modification. Pathway analysis revealed that pathways related to cardiovascular development and diseases were significantly affected by caffeine. In addition, global cardiac DNA methylation was reduced in caffeine-treated cardiomyocytes. Collectively, these data demonstrate that caffeine exposure alters gene expression and DNA methylation in embryonic cardiomyocytes.


Subject(s)
Caffeine/pharmacology , Gene Expression Regulation, Developmental/drug effects , Heart/drug effects , Myocytes, Cardiac/drug effects , Animals , Cell Shape/drug effects , Cell Survival/drug effects , Cells, Cultured , DNA Methylation/drug effects , Dose-Response Relationship, Drug , Female , Gene Expression Profiling , Gestational Age , Heart/embryology , Maternal Exposure , Mice , MicroRNAs/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Pregnancy , RNA, Messenger/metabolism , Time Factors , Transcription Factors/genetics , Transcription Factors/metabolism
19.
BMC Plant Biol ; 14: 204, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-25084677

ABSTRACT

BACKGROUND: The Maternally expressed gene (Meg) family is a locally-duplicated gene family of maize which encodes cysteine-rich proteins (CRPs). The founding member of the family, Meg1, is required for normal development of the basal endosperm transfer cell layer (BETL) and is involved in the allocation of maternal nutrients to growing seeds. Despite the important roles of Meg1 in maize seed development, the evolutionary history of the Meg cluster and the activities of the duplicate genes are not understood. RESULTS: In maize, the Meg gene cluster resides in a 2.3 Mb-long genomic region that exhibits many features of non-centromeric heterochromatin. Using phylogenetic reconstruction and syntenic alignments, we identified the pedigree of the Meg family, in which 11 of its 13 members arose in maize after allotetraploidization ~4.8 mya. Phylogenetic and population-genetic analyses identified possible signatures suggesting recent positive selection in Meg homologs. Structural analyses of the Meg proteins indicated potentially adaptive changes in secondary structure from α-helix to ß-strand during the expansion. Transcriptomic analysis of the maize endosperm indicated that 6 Meg genes are selectively activated in the BETL, and younger Meg genes are more active than older ones. In endosperms from B73 by Mo17 reciprocal crosses, most Meg genes did not display parent-specific expression patterns. CONCLUSIONS: Recently-duplicated Meg genes have different protein secondary structures, and their expressions in the BETL dominate over those of older members. Together with the signs of positive selections in the young Meg genes, these results suggest that the expansion of the Meg family involves potentially adaptive transitions in which new members with novel functions prevailed over older members.


Subject(s)
Endosperm/genetics , Genes, Duplicate , Multigene Family , Zea mays/genetics , Amino Acid Sequence , Amino Acid Substitution , Evolution, Molecular , Gene Expression Regulation, Plant , Genes, Plant , Molecular Sequence Data , Phylogeny , Protein Structure, Secondary , Selection, Genetic , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL