Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
Eur Radiol ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724766
2.
Neuroradiology ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38714545

ABSTRACT

INTRODUCTION: Dynamic susceptibility contrast (DSC) perfusion weighted (PW)-MRI can aid in differentiating treatment related abnormalities (TRA) from tumor progression (TP) in post-treatment glioma patients. Common methods, like the 'hot spot', or visual approach suffer from oversimplification and subjectivity. Using perfusion of the complete lesion potentially offers an objective and accurate alternative. This study aims to compare the diagnostic value and assess the subjectivity of these techniques. METHODS: 50 Glioma patients with enhancing lesions post-surgery and chemo-radiotherapy were retrospectively included. Outcome was determined by clinical/radiological follow-up or biopsy. Imaging analysis used the 'hot spot', volume of interest (VOI) and visual approach. Diagnostic accuracy was compared using receiving operator characteristics (ROC) curves for the VOI and 'hot spot' approach, visual assessment was analysed with contingency tables. Inter-operator agreement was determined with Cohens kappa and intra-class coefficient (ICC). RESULTS: 29 Patients suffered from TP, 21 had TRA. The visual assessment showed poor to substantial inter-operator agreement (κ = -0.72 - 0.68). Reliability of the 'hot spot' placement was excellent (ICC = 0.89), while reference placement was variable (ICC = 0.54). The area under the ROC (AUROC) of the mean- and maximum relative cerebral blood volume (rCBV) (VOI-analysis) were 0.82 and 0.72, while the rCBV-ratio ('hot spot' analysis) was 0.69. The VOI-analysis had a more balanced sensitivity and specificity compared to visual assessment. CONCLUSIONS: VOI analysis of DSC PW-MRI data holds greater diagnostic accuracy in single-moment differentiation of TP and TRA than 'hot spot' or visual analysis. This study underlines the subjectivity of visual placement and assessment.

3.
Neurooncol Adv ; 6(1): vdad168, 2024.
Article in English | MEDLINE | ID: mdl-38196738

ABSTRACT

Background: Survival outcomes for glioblastoma (GBM) patients remain unfavorable, and tumor recurrence is often observed. Understanding the radiological growth patterns of GBM could aid in improving outcomes. This study aimed to examine the relationship between contrast-enhancing tumor growth direction and white matter, using an image registration and deformation strategy. Methods: In GBM patients 2 pretreatment scans (diagnostic and neuronavigation) were gathered retrospectively, and coregistered to a template and diffusion tensor imaging (DTI) atlas. The GBM lesions were segmented and coregistered to the same space. Growth vectors were derived and divided into vector populations parallel (Φ = 0-20°) and perpendicular (Φ = 70-90°) to white matter. To test for statistical significance between parallel and perpendicular groups, a paired samples Student's t-test was performed. O6-methylguanine-DNA methyltransferase (MGMT) methylation status and its correlation to growth rate were also tested using a one-way ANOVA test. Results: For 78 GBM patients (mean age 61 years ±â€…13 SD, 32 men), the included GBM lesions showed a predominant preference for perineural satellitosis (P < .001), with a mean percentile growth of 30.8% (95% CI: 29.6-32.0%) parallel (0°â€…< |Φ| < 20°) to white matter. Perpendicular tumor growth with respect to white matter microstructure (70°â€…< |Φ| < 90°) showed to be 22.7% (95% CI: 21.3-24.1%) of total tumor growth direction. Conclusions: The presented strategy showed that tumor growth direction in pretreatment GBM patients correlated with white matter architecture. Future studies with patient-specific DTI data are required to verify the accuracy of this method prospectively to identify its usefulness as a clinical metric in pre and posttreatment settings.

4.
Curr Neurovasc Res ; 20(4): 472-479, 2023.
Article in English | MEDLINE | ID: mdl-38099530

ABSTRACT

OBJECTIVES: Repeated remote ischemic postconditioning (rIPostC) may be an easily applicable treatment following ischemic stroke to improve quality of life (QoL) and clinical outcomes. rIPostC consists of repeated, brief periods of limb ischemia (through inflation of a blood pressure cuff), followed by reperfusion. This study investigated the 1-year follow-up of rIPostC on QoL and clinical events. METHODS: As part of a randomized controlled trial, adult patients with an ischemic stroke within 24 hours after onset of symptoms were randomized to repeated rIPostC or sham-conditioning. rIPostC was applied twice daily during hospitalization (maximum of 4 days). QoL and patientreported outcome measures (PROMs) were assessed at 12-week and 1-year follow-ups. Additionally, we explored the effect of repeated rIPostC on clinical events (recurrent cerebrovascular events, hospitalization, and mortality). RESULTS: The trial was preliminarily stopped due to limitations in recruitment after the inclusion of 88 patients (rIPostC: 40; sham-conditioning: 48) (70 years, 68% male). Questionnaires were returned by 69 (78%) and 63 (72%) participants after 12 weeks and 1 year, respectively. The median difference of the stroke-specific QoL between rIPostC and sham-conditioning was 0.05 (p =0.986) and -0.16 (p =0.654) after 12 weeks and 1-year, respectively. No significant effect of rIPostC on the different domains of PROMs was detected. We observed no between-group differences in recurrent cerebrovascular events, hospitalization, or all-cause mortality (Hazard Ratios p >0.05). CONCLUSION: In this exploratory analysis, we observed no significant difference between repeated rIPostC and usual care on QoL and clinical outcomes at 12 weeks and 1 year in patients with an ischemic stroke. CLINICAL TRIAL REGISTRATION NUMBER: NTR6880.


Subject(s)
Ischemic Postconditioning , Ischemic Stroke , Stroke , Adult , Humans , Male , Female , Ischemic Stroke/therapy , Quality of Life , Stroke/therapy
5.
PLoS One ; 18(12): e0293353, 2023.
Article in English | MEDLINE | ID: mdl-38134125

ABSTRACT

BACKGROUND: Reliably capturing sub-millimeter vessel wall motion over time, using dynamic Computed Tomography Angiography (4D CTA), might provide insight in biomechanical properties of these vessels. This may improve diagnosis, prognosis, and treatment decision making in vascular pathologies. PURPOSE: The aim of this study is to determine the most suitable image reconstruction method for 4D CTA to accurately assess harmonic diameter changes of vessels. METHODS: An elastic tube (inner diameter 6 mm, wall thickness 2 mm) was exposed to sinusoidal pressure waves with a frequency of 70 beats-per-minute. Five flow amplitudes were set, resulting in increasing sinusoidal diameter changes of the elastic tube, measured during three simulated pulsation cycles, using ECG-gated 4D CTA on a 320-detector row CT system. Tomographic images were reconstructed using one of the following three reconstruction methods: hybrid iterative (Hybrid-IR), model-based iterative (MBIR) and deep-learning based (DLR) reconstruction. The three reconstruction methods where based on 180 degrees (half reconstruction mode) and 360 degrees (full reconstruction mode) raw data. The diameter change, captured by 4D CTA, was computed based on image registration. As a reference metric for diameter change measurement, a 9 MHz linear ultrasound transducer was used. The sum of relative absolute differences (SRAD) between the ultrasound and 4D CTA measurements was calculated for each reconstruction method. The standard deviation was computed across the three pulsation cycles. RESULTS: MBIR and DLR resulted in a decreased SRAD and standard deviation compared to Hybrid-IR. Full reconstruction mode resulted in a decreased SRAD and standard deviations, compared to half reconstruction mode. CONCLUSIONS: 4D CTA can capture a diameter change pattern comparable to the pattern captured by US. DLR and MBIR algorithms show more accurate results than Hybrid-IR. Reconstruction with DLR is >3 times faster, compared to reconstruction with MBIR. Full reconstruction mode is more accurate than half reconstruction mode.


Subject(s)
Computed Tomography Angiography , Radiographic Image Interpretation, Computer-Assisted , Computed Tomography Angiography/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Angiography/methods , Algorithms , Image Processing, Computer-Assisted , Radiation Dosage
6.
Cancers (Basel) ; 15(20)2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37894355

ABSTRACT

Distinguishing treatment-related abnormalities (TRA) from tumor progression (TP) in glioblastoma patients is a diagnostic imaging challenge due to the identical morphology of conventional MR imaging sequences. Diffusion-weighted imaging (DWI) and its derived images of the apparent diffusion coefficient (ADC) have been suggested as diagnostic tools for this problem. The aim of this study is to determine the diagnostic accuracy of different cut-off values of the ADC to differentiate between TP and TRA. In total, 76 post-treatment glioblastoma patients with new contrast-enhancing lesions were selected. Lesions were segmented using a T1-weighted, contrast-enhanced scan. The mean ADC values of the segmentations were compared between TRA and TP groups. Diagnostic accuracy was compared by use of the area under the curve (AUC) and the derived sensitivity and specificity values from cutoff points. Although ADC values in TP (mean = 1.32 × 10-3 mm2/s; SD = 0.31 × 10-3 mm2/s) were significantly different compared to TRA (mean = 1.53 × 10-3 mm2/s; SD = 0.28 × 10-3 mm2/s) (p = 0.003), considerable overlap in their distributions exists. The AUC of ADC values to distinguish TP from TRA was 0.71, with a sensitivity and specificity of 65% and 70%, respectively, at an ADC value of 1.47 × 10-3 mm2/s. These findings therefore indicate that ADC maps should not be used in discerning between TP and TRA at a certain timepoint without information on temporal evolution.

7.
Sci Rep ; 13(1): 12551, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37532773

ABSTRACT

The Automation Platform (AP) is a software platform to support the workflow of radiologists and includes a stroke CT package with integrated artificial intelligence (AI) based tools. The aim of this study was to evaluate the diagnostic performance of the AP for the detection of intracranial large vessel occlusions (LVO) on conventional CT angiography (CTA), and the duration of CT processing in a cohort of acute stroke patients. The diagnostic performance for intracranial LVO detection on CTA by the AP was evaluated in a retrospective cohort of 100 acute stroke patients and compared to the diagnostic performance of five radiologists with different levels of experience. The reference standard was set by an independent neuroradiologist, with access to the readings of the different radiologists, clinical data, and follow-up. The data processing time of the AP for ICH detection on non-contrast CT, LVO detection on CTA, and the processing of CTP maps was assessed in a subset 60 patients of the retrospective cohort. This was compared to 13 radiologists, who were prospectively timed for the processing and reading of 21 stroke CTs. The AP showed shorter processing time of CTA (mean 60 versus 395 s) and CTP (mean 196 versus 243-349 s) as compared to radiologists, but showed lower sensitivity for LVO detection (sensitivity 77% of the AP vs mean sensitivity 87% of radiologists). If the AP would have been used as a stand-alone system, 1 ICA occlusion, 2 M1 occlusions and 8 M2 occlusions would have been missed, which would be eligible for mechanical thrombectomy. In conclusion, the AP showed shorter processing time of CTA and CTP as compared with radiologists, which illustrates the potential of the AP to speed-up the diagnostic work-up. However, its performance for LVO detection was lower as compared with radiologists, especially for M2 vessel occlusions.


Subject(s)
Brain Ischemia , Stroke , Humans , Artificial Intelligence , Retrospective Studies , Workflow , Cerebral Angiography , Stroke/diagnostic imaging , Computed Tomography Angiography
8.
Sci Rep ; 13(1): 11507, 2023 07 17.
Article in English | MEDLINE | ID: mdl-37460572

ABSTRACT

In coronavirus disease 2019 (COVID-19), endothelial cells play a central role and an inadequate response is associated with vascular complications. PET imaging with gallium-68 labelled RGD-peptide (68Ga-RGD) targets αvß3 integrin expression which allows quantification of endothelial activation. In this single-center, prospective observational study, we included ten hospitalized patients with COVID-19 between October 2020 and January 2021. Patients underwent 68Ga-RGD PET/CT followed by iodine mapping of lung parenchyma. CT-based segmentation of lung parenchyma, carotid arteries and myocardium was used to quantify tracer uptake by calculating standardized uptake values (SUV). Five non-COVID-19 patients were used as reference. The study population was 68.5 (IQR 52.0-74.5) years old, with median oxygen need of 3 l/min (IQR 0.9-4.0). 68Ga-RGD uptake quantified as SUV ± SD was increased in lungs (0.99 ± 0.32 vs. 0.45 ± 0.18, p < 0.01) and myocardium (3.44 ± 1.59 vs. 0.65 ± 0.22, p < 0.01) of COVID-19 patients compared to reference but not in the carotid arteries. Iodine maps showed local variations in parenchymal perfusion but no correlation with SUV. In conclusion, using 68Ga-RGD PET/CT in COVID-19 patients admitted with respiratory symptoms, we demonstrated increased endothelial activation in the lung parenchyma and myocardium. Our findings indicate the involvement of increased and localized endothelial cell activation in the cardiopulmonary system in COVID-19 patients.Trail registration: NCT04596943.


Subject(s)
COVID-19 , Positron Emission Tomography Computed Tomography , Humans , Middle Aged , Aged , Gallium Radioisotopes , Endothelial Cells/metabolism , COVID-19/diagnostic imaging , Positron-Emission Tomography , Oligopeptides , Integrin alphaVbeta3/metabolism
9.
Cancers (Basel) ; 15(9)2023 May 05.
Article in English | MEDLINE | ID: mdl-37174097

ABSTRACT

The post-treatment imaging surveillance of gliomas is challenged by distinguishing tumor progression (TP) from treatment-related abnormalities (TRA). Sophisticated imaging techniques, such as perfusion-weighted magnetic resonance imaging (MRI PWI) and positron-emission tomography (PET) with a variety of radiotracers, have been suggested as being more reliable than standard imaging for distinguishing TP from TRA. However, it remains unclear if any technique holds diagnostic superiority. This meta-analysis provides a head-to-head comparison of the diagnostic accuracy of the aforementioned imaging techniques. Systematic literature searches on the use of PWI and PET imaging techniques were carried out in PubMed, Embase, the Cochrane Library, ClinicalTrials.gov and the reference lists of relevant papers. After the extraction of data on imaging technique specifications and diagnostic accuracy, a meta-analysis was carried out. The quality of the included papers was assessed using the QUADAS-2 checklist. Nineteen articles, totaling 697 treated patients with glioma (431 males; mean age ± standard deviation 50.5 ± 5.1 years) were included. The investigated PWI techniques included dynamic susceptibility contrast (DSC), dynamic contrast enhancement (DCE) and arterial spin labeling (ASL). The PET-tracers studied concerned [S-methyl-11C]methionine, 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG), O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET) and 6-[18F]-fluoro-3,4-dihydroxy-L-phenylalanine ([18F]FDOPA). The meta-analysis of all data showed no diagnostic superior imaging technique. The included literature showed a low risk of bias. As no technique was found to be diagnostically superior, the local level of expertise is hypothesized to be the most important factor for diagnostically accurate results in post-treatment glioma patients regarding the distinction of TRA from TP.

11.
Eur Radiol ; 33(3): 2139-2148, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36418623

ABSTRACT

OBJECTIVES: Approximately 50% of comatose patients after cardiac arrest never regain consciousness. Cerebral ischaemia may lead to cytotoxic and/or vasogenic oedema, which can be detected by diffusion tensor imaging (DTI). Here, we evaluate the potential value of free water corrected mean diffusivity (MD) and fractional anisotropy (FA) based on DTI, for the prediction of neurological recovery of comatose patients after cardiac arrest. METHODS: A total of 50 patients after cardiac arrest were included in this prospective cohort study in two Dutch hospitals. DTI was obtained 2-4 days after cardiac arrest. Outcome was assessed at 6 months, dichotomised as poor (cerebral performance category 3-5; n = 20) or good (n = 30) neurological outcome. We calculated the whole brain mean MD and FA and compared between patients with good and poor outcomes. In addition, we compared a preliminary prediction model based on clinical parameters with or without the addition of MD and FA. RESULTS: We found significant differences between patients with good and poor outcome of mean MD (good: 726 [702-740] × 10-6 mm2/s vs. poor: 663 [575-736] × 10-6 mm2/s; p = 0.01) and mean FA (0.30 ± 0.03 vs. 0.28 ± 0.03; p = 0.03). An exploratory prediction model combining clinical parameters, MD and FA increased the sensitivity for reliable prediction of poor outcome from 60 to 85%, compared to the model containing clinical parameters only, but confidence intervals are overlapping. CONCLUSIONS: Free water-corrected MD and FA discriminate between patients with good and poor outcomes after cardiac arrest and hold the potential to add to multimodal outcome prediction. KEY POINTS: • Whole brain mean MD and FA differ between patients with good and poor outcome after cardiac arrest. • Free water-corrected MD can better discriminate between patients with good and poor outcome than uncorrected MD. • A combination of free water-corrected MD (sensitive to grey matter abnormalities) and FA (sensitive to white matter abnormalities) holds potential to add to the prediction of outcome.


Subject(s)
Diffusion Tensor Imaging , Heart Arrest , Humans , Diffusion Tensor Imaging/methods , Coma/etiology , Prospective Studies , Brain , Heart Arrest/complications , Water , Anisotropy
12.
J Neurointerv Surg ; 15(4): 355-362, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35318957

ABSTRACT

BACKGROUND: A thrombus in the M1 segment of the middle cerebral artery (MCA) can occlude this main stem only or extend into the M1-M2 bifurcation. The occlusion pattern may affect endovascular treatment (EVT) success, as a bifurcated thrombus may be more prone to fragmentation during retrieval. OBJECTIVE: To investigate whether bifurcated thrombus patterns are associated with EVT procedural and clinical outcomes. METHODS: Occlusion patterns of MCA thrombi on CT angiography from MR CLEAN Registry patients were classified into three groups: main stem occlusion, bifurcation occlusion extending into one M2 branch, and bifurcation occlusion extending into both M2 branches. Procedural parameters, procedural outcomes (reperfusion grade and embolization to new territory), and clinical outcomes (24-48 hour National Institutes of Health Stroke Scale [NIHSSFU] score, change in NIHSS scores between 24 and 48 hours and baseline ∆ [NIHSS], and 90-day modified Rankin Scale [mRS] scores) were compared between occlusion patterns. RESULTS: We identified 1023 patients with an MCA occlusion of whom 370 (36%) had a main stem occlusion, 151 (15%) a single branch, and 502 (49%) a double branch bifurcation occlusion. There were no statistically significant differences in retrieval method, procedure time, number of retrieval attempts, reperfusion grade, and embolization to new territory between occlusion patterns. Patients with main stem occlusions had lower NIHSSFU scores than patients with single (7 vs 11, p=0.01) or double branch occlusions (7 vs 9, p=0.04). However, there were no statistically significant differences in ∆ NIHSS or in 90-day mRS scores. CONCLUSIONS: In our population, EVT procedural and long-term clinical outcomes were similar for MCA bifurcation occlusions and MCA main stem occlusions.


Subject(s)
Ischemic Stroke , Stroke , United States , Humans , Stroke/diagnostic imaging , Stroke/surgery , Ischemic Stroke/complications , Treatment Outcome , Infarction, Middle Cerebral Artery/diagnostic imaging , Infarction, Middle Cerebral Artery/surgery , Middle Cerebral Artery
13.
Diagnostics (Basel) ; 12(12)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36553021

ABSTRACT

Good collateral status in acute ischemic stroke patients is an important indicator for good outcomes. Perfusion imaging potentially allows for the simultaneous assessment of local perfusion and collateral status. We combined multiple CTP parameters to evaluate a CTP-based collateral score. We included 85 patients with a baseline CTP and single-phase CTA images from the MR CLEAN Registry. We evaluated patients' CTP parameters, including relative CBVs and tissue volumes with several time-to-maximum ranges, to be candidates for a CTP-based collateral score. The score candidate with the strongest association with CTA-based collateral score and a 90-day mRS was included for further analyses. We assessed the association of the CTP-based collateral score with the functional outcome (mRS 0-2) by analyzing three regression models: baseline prognostic factors (model 1), model 1 including the CTA-based collateral score (model 2), and model 1 including the CTP-based collateral score (model 3). The model performance was evaluated using C-statistic. Among the CTP-based collateral score candidates, relative CBVs with a time-to-maximum of 6-10 s showed a significant association with CTA-based collateral scores (p = 0.02) and mRS (p = 0.05) and was therefore selected for further analysis. Model 3 most accurately predicted favorable outcomes (C-statistic = 0.86, 95% CI: 0.77-0.94) although differences between regression models were not statistically significant. We introduced a CTP-based collateral score, which is significantly associated with functional outcome and may serve as an alternative collateral measure in settings where MR imaging is not feasible.

14.
Insights Imaging ; 13(1): 158, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36194373

ABSTRACT

BACKGROUND: In a considerable subgroup of glioma patients treated with (chemo) radiation new lesions develop either representing tumor progression (TP) or treatment-related abnormalities (TRA). Quantitative diffusion imaging metrics such as the Apparent Diffusion Coefficient (ADC) and Fractional Anisotropy (FA) have been reported as potential metrics to noninvasively differentiate between these two phenomena. Variability in performance scores of these metrics and absence of a critical overview of the literature contribute to the lack of clinical implementation. This meta-analysis therefore critically reviewed the literature and meta-analyzed the performance scores. METHODS: Systematic searching was carried out in PubMed, EMBASE and The Cochrane Library. Using predefined criteria, papers were reviewed. Diagnostic accuracy values of suitable papers were meta-analyzed quantitatively. RESULTS: Of 1252 identified papers, 10 ADC papers, totaling 414 patients, and 4 FA papers, with 154 patients were eligible for meta-analysis. Mean ADC values of the patients in the TP/TRA groups were 1.13 × 10-3mm2/s (95% CI 0.912 × 10-3-1.32 × 10-3mm2/s) and 1.38 × 10-3mm2/s (95% CI 1.33 × 10-3-1.45 × 10-3mm2/s, respectively. Mean FA values of TP/TRA was 0.19 (95% CI 0.189-0.194) and 0.14 (95% CI 0.137-0.143) respectively. A significant mean difference between ADC and FA values in TP versus TRA was observed (p = 0.005). CONCLUSIONS: Quantitative ADC and FA values could be useful for distinguishing TP from TRA on a meta-level. Further studies using serial imaging of individual patients are warranted to determine the role of diffusion imaging in glioma patients.

15.
Neuroimage Clin ; 36: 103171, 2022.
Article in English | MEDLINE | ID: mdl-36058165

ABSTRACT

AIM: Current multimodal approaches leave approximately half of the comatose patients after cardiac arrest with an indeterminate prognosis. Here we investigated whether early MRI markers of brain network integrity can distinguish between comatose patients with a good versus poor neurological outcome six months later. METHODS: We performed a prospective cohort study in 48 patients after cardiac arrest submitted in a comatose state to the Intensive Care Unit of two Dutch hospitals. MRI was performed at three days after cardiac arrest, including resting state functional MRI and diffusion-tensor imaging (DTI). Resting state fMRI was used to quantify functional connectivity within ten resting-state networks, and DTI to assess mean diffusivity (MD) in these same networks. We contrasted two groups of patients, those with good (n = 29, cerebral performance category 1-2) versus poor (n = 19, cerebral performance category 3-5) outcome at six months. Mutual associations between functional connectivity, MD, and clinical outcome were studied. RESULTS: Patients with good outcome show higher within-network functional connectivity (fMRI) and higher MD (DTI) than patients with poor outcome across 8/10 networks, most prominent in the default mode network, salience network, and visual network. While the anatomical distribution of outcome-related changes was similar for functional connectivity and MD, the pattern of inter-individual differences was very different: functional connectivity showed larger inter-individual variability in good versus poor outcome, while the opposite was observed for MD. Exploratory analyses suggested that it is possible to define network-specific cut-off values that could help in outcome prediction: (1) high functional connectivity and high MD, associated with good outcome; (2) low functional connectivity and low MD, associated with poor outcome; (3) low functional connectivity and high MD, associated with uncertain outcome. DISCUSSION: Resting-state functional connectivity and mean diffusivity-three days after cardiac arrest are strongly associated with neurological recovery-six months later in a complementary fashion. The combination of fMRI and MD holds potential to improve prediction of outcome.


Subject(s)
Coma , Heart Arrest , Humans , Prospective Studies , Coma/diagnostic imaging , Coma/etiology , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Heart Arrest/complications , Heart Arrest/diagnostic imaging
16.
Front Neurol ; 13: 882070, 2022.
Article in English | MEDLINE | ID: mdl-35785361

ABSTRACT

The current study aimed to investigate whether diffusion-weighted imaging-positive (DWI+) lesions after acute intracerebral hemorrhage (ICH) are associated with underlying small vessel disease (SVD) or linked to the acute ICH. We included patients ≥18 years with spontaneous ICH confirmed on neuroimaging and performed 3T MRIs after a median of 11 days (interquartile range [IQR] 6-43). DWI+ lesions were assessed in relation to the hematoma (perihematomal vs. distant and ipsilateral vs. contralateral). Differences in clinical characteristics, ICH characteristics, and MRI markers of SVD between participants with or without DWI+ lesions were investigated using non-parametric tests. We observed 54 DWI+ lesions in 30 (22%) of the 138 patients (median age [IQR] 65 [55-73] years; 71% men, 59 lobar ICH) with available DWI images. We found DWI+ lesions ipsilateral (54%) and contralateral (46%) to the ICH, and 5 (9%) DWI+ lesions were located in the immediate perihematomal region. DWI+ lesion presence was associated with probable CAA diagnosis (38 vs. 15%, p = 0.01) and larger ICH volumes (37 [8-47] vs. 12 [6-24] ml, p = 0.01), but not with imaging features of SVD. Our findings suggest that DWI+ lesions after ICH are a feature of both the underlying SVD and ICH-related mechanisms.

17.
Radiat Oncol ; 17(1): 130, 2022 Jul 23.
Article in English | MEDLINE | ID: mdl-35871069

ABSTRACT

BACKGROUND: Increased head and neck cancer (HNC) survival requires attention to long-term treatment sequelae. Irradiated HNC survivors have a higher ischemic stroke risk. However, the pathophysiology of radiation-induced vasculopathy is unclear. Arterial stiffness could be a biomarker. This study examined alterations in intima-media thickness (IMT) and stiffness-related parameters, shear wave (SWV) and pulse wave velocity (PWV), in irradiated compared to control carotids in unilateral irradiated patients. METHODS: Twenty-six patients, median 40.5 years, 5-15 years after unilateral irradiation for head and neck neoplasms underwent a bilateral carotid ultrasound using an Aixplorer system with SL18-5 and SL10-2 probes. IMT, SWV, and PWV were assessed in the proximal, mid, and distal common (CCA) and internal carotid artery (ICA). Plaques were characterized with magnetic resonance imaging. Measurements were compared between irradiated and control sides, and radiation dose effects were explored. RESULTS: CCA-IMT was higher in irradiated than control carotids (0.54 [0.50-0.61] vs. 0.50 [0.44-0.54] mm, p = 0.001). For stiffness, only anterior mid-CCA and posterior ICA SWV were significantly higher in the irradiated side. A radiation dose-effect was only (weakly) apparent for PWV (R2: end-systolic = 0.067, begin-systolic = 0.155). Ultrasound measurements had good-excellent intra- and interobserver reproducibility. Plaques had similar characteristics but were more diffuse in the irradiated side. CONCLUSIONS: Increased CCA-IMT and SWV in some segments were seen in irradiated carotids. These alterations, even in young patients, mark the need for surveillance of radiation-induced vasculopathy. TRIAL REGISTRATION: clinicaltrials.gov ( https://clinicaltrials.gov/ct2/show/NCT04257968 ).


Subject(s)
Head and Neck Neoplasms , Radiation Injuries , Adult , Carotid Arteries/diagnostic imaging , Carotid Artery, Common/diagnostic imaging , Carotid Artery, Common/radiation effects , Carotid Intima-Media Thickness , Cross-Sectional Studies , Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/radiotherapy , Humans , Pulse Wave Analysis , Radiation Injuries/diagnostic imaging , Radiation Injuries/etiology , Reproducibility of Results , Risk Factors
18.
Cancer Imaging ; 22(1): 28, 2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35715866

ABSTRACT

BACKGROUND: In neuro-oncology, dynamic susceptibility contrast magnetic resonance (DSC-MR) perfusion imaging emerged as a tool to aid in the diagnostic work-up and to surveil effectiveness of treatment. However, it is believed that a significant variability exists with regard to the measured in DSC-MR perfusion parameters. The aim of this study was to assess the observer variability in measured DSC-MR perfusion parameters in patients before and after treatment. In addition, we investigated whether region-of-interest (ROI) shape impacted the observer variability. MATERIALS AND METHODS: Twenty non-treated patients and a matched group of twenty patients post-treatment (neurosurgical resection and post-chemoradiotherapy) were included. Six ROIs were independently placed by three readers: circular ROIs and polygonal ROIs covering 1) the tumor hotspot; 2) the peritumoral region (T2/FLAIR-hyperintense region) and 3) the whole tumor region. A two-way random Intra-class coefficient (ICC) model was used to assess variability in measured DSC-MRI perfusion parameters. The perfusion metrics as assessed by the circular and the polygonal ROI were compared by use of the dependent T-test. RESULTS: In the non-treated group, circular ROIs showed good-excellent overlap (ICC-values ranging from 0.741-0.963) with the exception of those representing the tumor hotspot. Polygonal ROIs showed lower ICC-values, ranging from 0.113 till 0.856. ROI-placement in the posttreatment group showed to be highly variable with a significant deterioration of ICC-values. Furthermore, perfusion metric assessment in similar tumor regions was not impacted by ROI shape. DISCUSSION: This study shows that posttreatment quantitative interpretation of DSC-MR perfusion imaging is highly variable and should be carried out with precaution. Pretreatment assessment of DSC-MR images, however, could be carried out be a single reader in order to provide valid data for further analyses.


Subject(s)
Brain Neoplasms , Glioma , Benchmarking , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Brain Neoplasms/therapy , Contrast Media , Glioma/diagnostic imaging , Glioma/pathology , Glioma/therapy , Humans , Magnetic Resonance Imaging/methods , Perfusion , Reproducibility of Results
19.
Neurocrit Care ; 37(1): 302-313, 2022 08.
Article in English | MEDLINE | ID: mdl-35469391

ABSTRACT

BACKGROUND: Despite application of the multimodal European Resuscitation Council and European Society of Intensive Care Medicine algorithm, neurological prognosis of patients who remain comatose after cardiac arrest remains uncertain in a large group of patients. In this study, we investigate the additional predictive value of visual and quantitative brain magnetic resonance imaging (MRI) to electroencephalography (EEG) for outcome estimation of comatose patients after cardiac arrest. METHODS: We performed a prospective multicenter cohort study in patients after cardiac arrest submitted in a comatose state to the intensive care unit of two Dutch hospitals. Continuous EEG was recorded during the first 3 days and MRI was performed at 3 ± 1 days after cardiac arrest. EEG at 24 h and ischemic damage in 21 predefined brain regions on diffusion weighted imaging and fluid-attenuated inversion recovery on a scale from 0 to 4 were related to outcome. Quantitative MRI analyses included mean apparent diffusion coefficient (ADC) and percentage of brain volume with ADC < 450 × 10-6 mm2/s, < 550 × 10-6 mm2/s, and < 650 × 10-6 mm2/s. Poor outcome was defined as a Cerebral Performance Category score of 3-5 at 6 months. RESULTS: We included 50 patients, of whom 20 (40%) demonstrated poor outcome. Visual EEG assessment correctly identified 3 (15%) with poor outcome and 15 (50%) with good outcome. Visual grading of MRI identified 13 (65%) with poor outcome and 25 (89%) with good outcome. ADC analysis identified 11 (55%) with poor outcome and 3 (11%) with good outcome. EEG and MRI combined could predict poor outcome in 16 (80%) patients at 100% specificity, and good outcome in 24 (80%) at 63% specificity. Ischemic damage was most prominent in the cortical gray matter (75% vs. 7%) and deep gray nuclei (45% vs. 3%) in patients with poor versus good outcome. CONCLUSIONS: Magnetic resonance imaging is complementary with EEG for the prediction of poor and good outcome of patients after cardiac arrest who are comatose at admission.


Subject(s)
Coma , Heart Arrest , Cohort Studies , Coma/diagnostic imaging , Coma/etiology , Electroencephalography/methods , Heart Arrest/complications , Heart Arrest/diagnostic imaging , Heart Arrest/therapy , Humans , Prognosis , Prospective Studies
20.
Diagnostics (Basel) ; 12(3)2022 Mar 12.
Article in English | MEDLINE | ID: mdl-35328251

ABSTRACT

Thrombus imaging characteristics are associated with treatment success and functional outcomes in stroke patients. However, assessing these characteristics based on manual annotations is labor intensive and subject to observer bias. Therefore, we aimed to create an automated pipeline for consistent and fast full thrombus segmentation. We used multi-center, multi-scanner datasets of anterior circulation stroke patients with baseline NCCT and CTA for training (n = 228) and testing (n = 100). We first found the occlusion location using StrokeViewer LVO and created a bounding box around it. Subsequently, we trained dual modality U-Net based convolutional neural networks (CNNs) to segment the thrombus inside this bounding box. We experimented with: (1) U-Net with two input channels for NCCT and CTA, and U-Nets with two encoders where (2) concatenate, (3) add, and (4) weighted-sum operators were used for feature fusion. Furthermore, we proposed a dynamic bounding box algorithm to adjust the bounding box. The dynamic bounding box algorithm reduces the missed cases but does not improve Dice. The two-encoder U-Net with a weighted-sum feature fusion shows the best performance (surface Dice 0.78, Dice 0.62, and 4% missed cases). Final segmentation results have high spatial accuracies and can therefore be used to determine thrombus characteristics and potentially benefit radiologists in clinical practice.

SELECTION OF CITATIONS
SEARCH DETAIL
...