Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Eur J Hum Genet ; 31(6): 654-662, 2023 06.
Article in English | MEDLINE | ID: mdl-36781956

ABSTRACT

Various groups of neurological disorders, including movement disorders and neuromuscular diseases, are clinically and genetically heterogeneous. Diagnostic panel-based exome sequencing is a routine test for these disorders. Despite the success rates of exome sequencing, it results in the detection of causative sequence variants in 'only' 25-30% of cases. Copy number variants (CNVs), i.e. deletion or duplications, explain 10-20% of individuals with multisystemic phenotypes, such as co-existing intellectual disability, but may also have a role in disorders affecting a single system (organ), like neurological disorders with normal intelligence. In this study, CNVs were extracted from clinical exome sequencing reports of 4800 probands primarily with a movement disorder, myopathy or neuropathy. In 88 (~2%) probands, phenotype-matching CNVs were detected, representing ~7% of genetically confirmed cases. CNVs varied from involvement of over 100 genes to single exons and explained X-linked, autosomal dominant, or - recessive disorders, the latter due to either a homozygous CNV or a compound heterozygous CNV with a sequence variant on the other allele. CNVs were detected affecting genes where deletions or duplications are established as a common mechanism, like PRKN (in Parkinson's disease), DMD (in Duchenne muscular dystrophy) and PMP22 (in neuropathies), but also genes in which no intragenic CNVs have been reported to date. Analysis of CNVs as part of panel-based exome sequencing for genetically heterogeneous neurological diseases provides an additional diagnostic yield of ~2% without extra laboratory costs. Therefore it is recommended to perform CNV analysis for movement disorders, muscle disease, neuropathies, or any other single-system disorder.


Subject(s)
Movement Disorders , Muscular Dystrophy, Duchenne , Humans , Exome , DNA Copy Number Variations , Exons , Muscular Dystrophy, Duchenne/genetics , Movement Disorders/genetics
2.
Genet Med ; 23(8): 1569-1573, 2021 08.
Article in English | MEDLINE | ID: mdl-33846582

ABSTRACT

PURPOSE: Expansions of a subset of short tandem repeats (STRs) have been implicated in approximately 30 different human genetic disorders. Despite extensive application of exome sequencing (ES) in routine diagnostic genetic testing, STRs are not routinely identified from these data. METHODS: We assessed diagnostic utility of STR analysis in exome sequencing by applying ExpansionHunter to 2,867 exomes from movement disorder patients and 35,228 other clinical exomes. RESULTS: We identified 38 movement disorder patients with a possible aberrant STR length. Validation by polymerase chain reaction (PCR) and/or repeat-primed PCR technologies confirmed the presence of aberrant expansion alleles for 13 (34%). For seven of these patients the genotype was compatible with the phenotypic description, resulting in a molecular diagnosis. We subsequently tested the remainder of our diagnostic ES cohort, including over 30 clinically and genetically heterogeneous disorders. Optimized manual curation yielded 167 samples with a likely aberrant STR length. Validations confirmed 93/167 (56%) aberrant expansion alleles, of which 48 were in the pathogenic range and 45 in the premutation range. CONCLUSION: Our work provides guidance for the implementation of STR analysis in clinical ES. Our results show that systematic STR evaluation may increase diagnostic ES yield by 0.2%, and recommend making STR evaluation a routine part of ES interpretation in genetic testing laboratories.


Subject(s)
Exome , Microsatellite Repeats , Alleles , Exome/genetics , Genotype , Humans , Microsatellite Repeats/genetics , Polymerase Chain Reaction
3.
Eur J Hum Genet ; 28(1): 40-49, 2020 01.
Article in English | MEDLINE | ID: mdl-31488895

ABSTRACT

Variants in the KIF1A gene can cause autosomal recessive spastic paraplegia 30, autosomal recessive hereditary sensory neuropathy, or autosomal (de novo) dominant mental retardation type 9. More recently, variants in KIF1A have also been described in a few cases with autosomal dominant spastic paraplegia. Here, we describe 20 KIF1A variants in 24 patients from a clinical exome sequencing cohort of 347 individuals with a mostly 'pure' spastic paraplegia. In these patients, spastic paraplegia was slowly progressive and mostly pure, but with a highly variable disease onset (0-57 years). Segregation analyses showed a de novo occurrence in seven cases, and a dominant inheritance pattern in 11 families. The motor domain of KIF1A is a hotspot for disease causing variants in autosomal dominant spastic paraplegia, similar to mental retardation type 9 and recessive spastic paraplegia type 30. However, unlike these allelic disorders, dominant spastic paraplegia was also caused by loss-of-function variants outside this domain in six families. Finally, three missense variants were outside the motor domain and need further characterization. In conclusion, KIF1A variants are a frequent cause of autosomal dominant spastic paraplegia in our cohort (6-7%). The identification of KIF1A loss-of-function variants suggests haploinsufficiency as a possible mechanism in autosomal dominant spastic paraplegia.


Subject(s)
Kinesins/genetics , Spastic Paraplegia, Hereditary/genetics , Adolescent , Adult , Child , Child, Preschool , Female , Genes, Dominant , Humans , Infant , Kinesins/chemistry , Male , Middle Aged , Mutation, Missense , Pedigree , Protein Domains , Spastic Paraplegia, Hereditary/pathology
4.
Am J Hum Genet ; 87(6): 813-9, 2010 Dec 10.
Article in English | MEDLINE | ID: mdl-21092923

ABSTRACT

Autosomal-recessive cerebellar ataxias comprise a clinically and genetically heterogeneous group of neurodegenerative disorders. In contrast to their dominant counterparts, unraveling the molecular background of these ataxias has proven to be more complicated and the currently known mutations provide incomplete coverage for genotyping of patients. By combining SNP array-based linkage analysis and targeted resequencing of relevant sequences in the linkage interval with the use of next-generation sequencing technology, we identified a mutation in a gene and have shown its association with autosomal-recessive cerebellar ataxia. In a Dutch consanguineous family with three affected siblings a homozygous 12.5 Mb region on chromosome 3 was targeted by array-based sequence capture. Prioritization of all detected sequence variants led to four candidate genes, one of which contained a variant with a high base pair conservation score (phyloP score: 5.26). This variant was a leucine-to-arginine substitution in the DUF 590 domain of a 16K transmembrane protein, a putative calcium-activated chloride channel encoded by anoctamin 10 (ANO10). The analysis of ANO10 by Sanger sequencing revealed three additional mutations: a homozygous mutation (c.1150_1151del [p.Leu384fs]) in a Serbian family and a compound-heterozygous splice-site mutation (c.1476+1G>T) and a frameshift mutation (c.1604del [p.Leu535X]) in a French family. This illustrates the power of using initial homozygosity mapping with next-generation sequencing technology to identify genes involved in autosomal-recessive diseases. Moreover, identifying a putative calcium-dependent chloride channel involved in cerebellar ataxia adds another pathway to the list of pathophysiological mechanisms that may cause cerebellar ataxia.


Subject(s)
Cerebellar Ataxia/genetics , Genes, Recessive , Homozygote , Membrane Proteins/genetics , Mutation , Neoplasm Proteins/genetics , Anoctamin-1 , Chloride Channels , Humans , Polymorphism, Single Nucleotide
5.
J Mol Diagn ; 11(6): 514-23, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19779133

ABSTRACT

In this study, we developed and analytically validated a fully automated, robust confirmation sensitive capillary electrophoresis (CSCE) method to perform mutation scanning of the large SACS gene. This method facilitates a rapid and cost-effective molecular diagnosis of autosomal recessive spastic ataxia of Charlevoix-Saguenay. Critical issues addressed during the development of the CSCE system included the position of a DNA variant relative to the primers and the CG-content of the amplicons. The validation was performed in two phases; a retrospective analysis of 32 samples containing 41 different known DNA variants and a prospective analysis of 20 samples of patients clinically suspected of having autosomal recessive spastic ataxia of Charlevoix-Saguenay. These 20 samples appeared to contain 73 DNA variants. In total, in 32 out of the 45 amplicons, a DNA variant was present, which allowed verification of the detection capacity during the validation process. After optimization of the original design, the overall analytical sensitivity of CSCE for the SACS gene was 100%, and the analytical specificity of CSCE was 99.8%. In conclusion, CSCE is a robust technique with a high analytical sensitivity and specificity, and it can readily be used for mutation scanning of the large SACS gene. Furthermore this technique is less time-consuming and less expensive, as compared with standard automated sequencing.


Subject(s)
DNA Mutational Analysis/methods , Electrophoresis, Capillary/methods , Heat-Shock Proteins/genetics , DNA Mutational Analysis/economics , Electrophoresis, Capillary/standards , Humans , Mutation , Reproducibility of Results
6.
Neurogenetics ; 9(3): 207-14, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18465152

ABSTRACT

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS: MIM 270550) is a neurodegenerative disorder characterized by early-onset cerebellar ataxia with spasticity and peripheral neuropathy. This disorder, considered to be rare, was first described in the late seventies among French Canadians in the isolated Charlevoix-Saguenay region of Quebec. Nowadays, it is known that the disorder is not only limited to this region but occurs worldwide. Our objective was to identify cases of autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) in Dutch patients with recessive early-onset cerebellar ataxia by sequencing the complete SACS gene. In a Dutch cohort of 43 index patients with ataxia onset before age 25, we identified 16 index patients (total 23 patients) with mutations in the SACS gene. Nine of them had homozygous mutations, and seven of them had compound heterozygous mutations. Retrospectively, the phenotype of patients carrying mutations was remarkably uniform: cerebellar ataxia with onset before age 13 years, lower limb spasticity and sensorimotor axonal neuropathy, and cerebellar (vermis) atrophy on magnetic resonance imaging, consistent with the core ARSACS phenotype previously described. The high rate of mutations (37%) identified in this cohort of Dutch patients suggests that ARSACS is substantially more frequent than previously estimated. We predict that the availability of SACS mutation analysis as well as an increasing awareness of the characteristic ARSACS phenotype will lead to the diagnosis of many additional patients, possibly even at a younger age.


Subject(s)
Heat-Shock Proteins/genetics , Mutation , Spinocerebellar Ataxias/genetics , Adolescent , Age of Onset , Child , Cohort Studies , DNA Mutational Analysis , Genes, Recessive , Heterozygote , Homozygote , Humans , Netherlands , Phenotype , Retrospective Studies , Spinocerebellar Ataxias/etiology , Spinocerebellar Ataxias/pathology , Young Adult
7.
Hum Mutat ; 29(9): 1125-32, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18470948

ABSTRACT

Feingold syndrome (FS) is the most frequent cause of familial syndromic gastrointestinal atresia and follows autosomal dominant inheritance. FS is caused by germline mutations in or deletions of the MYCN gene. Previously, 12 different heterozygous MYCN mutations and two deletions containing multiple genes including MYCN were described. All these mutations result in haploinsufficiency of both the canonical MYCN protein and the shorter isoform, DeltaMYCN. We report 11 novel mutations including seven mutations in exon 2 that result in a premature termination codon (PTC) in the long MYCN transcript. Moreover, we have identified a PTC in exon 1 that only affects the DeltaMYCN isoform, without a phenotypic effect. This suggests that mutations in only DeltaMYCN do not contribute to the FS. Additionally, we found three novel deletions encompassing MYCN. Together with our previous report we now have a total of four missense mutations in the DNA binding domain, 19 PTCs of which six render the transcript subject to nonsense-mediated decay (NMD), and five larger deletions in a total of 77 patients. We have reviewed the clinical features of these patients, and found that digital anomalies, e.g., brachymesophalangy and toe syndactyly, are the most consistent features, present in 100% and 97% of the patients, respectively. Small head circumference was present in 89% of the cases. Gastrointestinal atresia remains the most important major congenital anomaly (55%), but cardiac and renal anomalies are also frequent. We suggest that the presence of brachymesophalangy and toe syndactyly in combination with microcephaly is enough to justify MYCN analysis.


Subject(s)
Abnormalities, Multiple/genetics , Intestinal Atresia/genetics , Mutation , Nuclear Proteins/genetics , Oncogene Proteins/genetics , Digestive System Abnormalities/genetics , Family Health , Genes, Dominant , Genotype , Microcephaly/genetics , N-Myc Proto-Oncogene Protein , Phenotype , Syndactyly/genetics , Syndrome , Toes/abnormalities
SELECTION OF CITATIONS
SEARCH DETAIL
...