Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Radiother Oncol ; 199: 110434, 2024 10.
Article in English | MEDLINE | ID: mdl-39009306

ABSTRACT

There is a rising interest in developing and utilizing arc delivery techniques with charged particle beams, e.g., proton, carbon or other ions, for clinical implementation. In this work, perspectives from the European Society for Radiotherapy and Oncology (ESTRO) 2022 physics workshop on particle arc therapy are reported. This outlook provides an outline and prospective vision for the path forward to clinically deliverable proton, carbon, and other ion arc treatments. Through the collaboration among industry, academic, and clinical research and development, the scientific landscape and outlook for particle arc therapy are presented here to help our community understand the physics, radiobiology, and clinical principles. The work is presented in three main sections: (i) treatment planning, (ii) treatment delivery, and (iii) clinical outlook.


Subject(s)
Neoplasms , Proton Therapy , Humans , Proton Therapy/methods , Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Heavy Ion Radiotherapy/methods , Radiation Oncology , Radiotherapy Dosage
2.
Phys Imaging Radiat Oncol ; 30: 100581, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38711920

ABSTRACT

Background and purpose: Ion beams exhibit an increased relative biological effectiveness (RBE) with respect to photons. This study determined the RBE of oxygen ion beams as a function of linear energy transfer (LET) and dose in the rat spinal cord. Materials and methods: The spinal cord of rats was irradiated at four different positions of a 6 cm spread-out Bragg-peak (LET: 26, 66, 98 and 141 keV/µm) using increasing levels of single and split oxygen ion doses. Dose-response curves were established for the endpoint paresis grade II and based on ED50 (dose at 50 % effect probability), the RBE was determined and compared to model predictions. Results: When LET increased from 26 to 98 keV/µm, ED50 decreased from 17.2 ± 0.3 Gy to 13.5 ± 0.4 Gy for single and from 21.7 ± 0.4 Gy to 15.5 ± 0.5 Gy for split doses, however, at 141 keV/µm, ED50 rose again to 15.8 ± 0.4 Gy and 17.2 ± 0.4 Gy, respectively. As a result, the RBE increased from 1.43 ± 0.05 to 1.82 ± 0.08 (single dose) and from 1.58 ± 0.04 to 2.21 ± 0.08 (split dose), respectively, before declining again to 1.56 ± 0.06 for single and 1.99 ± 0.06 for split doses at the highest LET. Deviations from RBE-predictions were model-dependent. Conclusion: This study established first RBE data for the late reacting central nervous system after single and split doses of oxygen ions. The data was used to validate the RBE-dependence on LET and dose of three RBE-models. This study extends the existing data base for protons, helium and carbon ions and provides important information for future patient treatments with oxygen ions.

3.
Med Phys ; 51(5): 3782-3795, 2024 May.
Article in English | MEDLINE | ID: mdl-38569067

ABSTRACT

BACKGROUND: Interpatient variation of tumor radiosensitivity is rarely considered during the treatment planning process despite its known significance for the therapeutic outcome. PURPOSE: To apply our mechanistic biophysical model to investigate the biological robustness of carbon ion radiotherapy (CIRT) against DNA damage repair interference (DDRi) associated patient-to-patient variability in radiosensitivity and its potential clinical advantages against conventional radiotherapy approaches. METHODS AND MATERIALS: The "UNIfied and VERSatile bio response Engine" (UNIVERSE) was extended by carbon ions and its predictions were compared to a panel of in vitro and in vivo data including various endpoints and DDRi settings within clinically relevant dose and linear energy transfer (LET) ranges. The implications of UNIVERSE predictions were then assessed in a clinical patient scenario considering DDRi variance. RESULTS: UNIVERSE tests well against the applied benchmarks. While in vitro survival curves were predicted with an R2 > 0.92, deviations from in vivo RBE data were less than 5.6% The conducted paradigmatic patient plan study implies a markedly reduced significance of DDRi based radiosensitivity variability in CIRT (13% change of D 50 ${{D}_{50}}$ in target) compared to conventional radiotherapy (62%) and that boosting the LET within the target further amplifies this robustness of CIRT (8%). In the case of heightened tumor radiosensitivity, a dose de-escalation strategy for photons allows a reduction of the maximum effective dose within the normal tissue (NT) from a D 2 ${{D}_2}$ of 2.65 to 1.64 Gy, which lies below the level found for CIRT ( D 2 ${{D}_2}$  = 2.41 Gy) for the analyzed plan and parameters. However, even after de-escalation, the integral effective dose in the NT is found to be substantially higher for conventional radiotherapy in comparison to CIRT ( D m e a n ${{D}_{mean}}$ of 0.75, 0.46, and 0.24 Gy for the conventional plan, its de-escalation and CIRT, respectively). CONCLUSIONS: The framework offers adequate predictions of in vitro and in vivo radiation effects of CIRT while allowing the consideration of DRRi based solely on parameters derived from photon data. The results of the patient planning study underline the potential of CIRT to minimize important sources of interpatient divergence in therapy outcome, especially when combined with techniques that allow to maximize the LET within the tumor. Despite the potential of de-escalation strategies for conventional radiotherapy to reduce the maximum effective dose in the NT, CIRT appears to remain a more favorable option due to its ability to reduce the integral effective dose within the NT.


Subject(s)
DNA Damage , DNA Repair , Heavy Ion Radiotherapy , Radiation Tolerance , Humans , DNA Repair/radiation effects , Models, Biological , Linear Energy Transfer
4.
Int J Radiat Oncol Biol Phys ; 119(5): 1545-1556, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38423224

ABSTRACT

PURPOSE: Recent experimental studies and clinical trial results might indicate that-at least for some indications-continued use of the mechanistic model for relative biological effectiveness (RBE) applied at carbon ion therapy facilities in Europe for several decades (LEM-I) may be unwarranted. We present a novel clinical framework for prostate cancer treatment planning and tumor control probability (TCP) prediction based on the modified microdosimetric kinetic model (mMKM) for particle therapy. METHODS AND MATERIALS: Treatment plans of 91 patients with prostate tumors (proton: 46, carbon ions: 45) applying 66 GyRBE [RBE = 1.1 for protons and LEM-I, (α/ß)x = 2.0 Gy, for carbon ions] in 20 fractions were recalculated using mMKM [(α/ß)x = 3.1 Gy]). Based solely on the response data of photon-irradiated patient groups stratified according to risk and usage of androgen deprivation therapy, we derived parameters for an mMKM-based Poisson-TCP model. Subsequently, new carbon and helium ion plans, adhering to prescribed biological dose criteria, were generated. These were systematically compared with the clinical experience of Japanese centers employing an analogous fractionation scheme and existing proton plans. RESULTS: mMKM predictions suggested significant biological dose deviation between the proton and carbon ion arms. Patients irradiated with protons received (3.25 ± 0.08) GyRBEmMKM/Fx, whereas patients treated with carbon ions received(2.51 ± 0.05) GyRBEmMKM/Fx. TCP predictions were (86 ± 3)% for protons and (52 ± 4)% for carbon ions, matching the clinical outcome of 85% and 50%. Newly optimized carbon ion plans, guided by the mMKM/TCP model, effectively replicated clinical data from Japanese centers. Using mMKM, helium ions exhibited similar target coverage as proton and carbon ions and improved rectum and bladder sparing compared with proton. CONCLUSIONS: Our mMKM-based model for prostate cancer treatment planning and TCP prediction was validated against clinical data for proton and carbon ion therapy, and its application was extended to helium ion therapy. Based on the data presented in this work, mMKM seems to be a good candidate for clinical biological calculations in carbon ion therapy for prostate cancer.


Subject(s)
Heavy Ion Radiotherapy , Prostatic Neoplasms , Proton Therapy , Radiotherapy Planning, Computer-Assisted , Relative Biological Effectiveness , Humans , Male , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/pathology , Proton Therapy/methods , Radiotherapy Planning, Computer-Assisted/methods , Probability , Androgen Antagonists/therapeutic use , Organs at Risk/radiation effects , Treatment Outcome , Models, Biological , Kinetics , Dose Fractionation, Radiation , Rectum/radiation effects , Urinary Bladder/radiation effects
5.
Med Phys ; 51(2): 1433-1449, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37748042

ABSTRACT

BACKGROUND: Monte Carlo (MC) simulations are considered the gold-standard for accuracy in radiotherapy dose calculation; so far however, no commercial treatment planning system (TPS) provides a fast MC for supporting clinical practice in carbon ion therapy. PURPOSE: To extend and validate the in-house developed fast MC dose engine MonteRay for carbon ion therapy, including physical and biological dose calculation. METHODS: MonteRay is a CPU MC dose calculation engine written in C++ that is capable of simulating therapeutic proton, helium and carbon ion beams. In this work, development steps taken to include carbon ions in MonteRay are presented. Dose distributions computed with MonteRay are evaluated using a comprehensive validation dataset, including various measurements (pristine Bragg peaks, spread out Bragg peaks in water and behind an anthropomorphic phantom) and simulations of a patient plan. The latter includes both physical and biological dose comparisons. Runtimes of MonteRay were evaluated against those of FLUKA MC on a standard benchmark problem. RESULTS: Dosimetric comparisons between MonteRay and measurements demonstrated good agreement. In terms of pristine Bragg peaks, mean errors between simulated and measured integral depth dose distributions were between -2.3% and +2.7%. Comparing SOBPs at 5, 12.5 and 20 cm depth, mean absolute relative dose differences were 0.9%, 0.7% and 1.6% respectively. Comparison against measurements behind an anthropomorphic head phantom revealed mean absolute dose differences of 1.2 % ± 1.1 % $1.2\% \pm 1.1\;\%$ with global 3%/3 mm 3D-γ passing rates of 99.3%, comparable to those previously reached with FLUKA (98.9%). Comparisons against dose predictions computed with the clinical treatment planning tool RayStation 11B for a meningioma patient plan revealed excellent local 1%/1 mm 3D-γ passing rates of 98% for physical and 94% for biological dose. In terms of runtime, MonteRay achieved speedups against reference FLUKA simulations ranging from 14× to 72×, depending on the beam's energy and the step size chosen. CONCLUSIONS: Validations against clinical dosimetric measurements in homogeneous and heterogeneous scenarios and clinical TPS calculations have proven the validity of the physical models implemented in MonteRay. To conclude, MonteRay is viable as a fast secondary MC engine for supporting clinical practice in proton, helium and carbon ion radiotherapy.


Subject(s)
Heavy Ion Radiotherapy , Proton Therapy , Humans , Protons , Radiotherapy Dosage , Helium/therapeutic use , Radiotherapy Planning, Computer-Assisted , Monte Carlo Method , Carbon/therapeutic use
6.
Med Phys ; 51(3): 2251-2262, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37847027

ABSTRACT

BACKGROUND: Radiotherapy with charged particles at high dose and ultra-high dose rate (uHDR) is a promising technique to further increase the therapeutic index of patient treatments. Dose rate is a key quantity to predict the so-called FLASH effect at uHDR settings. However, recent works introduced varying calculation models to report dose rate, which is susceptible to the delivery method, scanning path (in active beam delivery) and beam intensity. PURPOSE: This work introduces an analytical dose rate calculation engine for raster scanned charged particle beams that is able to predict dose rate from the irradiation plan and recorded beam intensity. The importance of standardized dose rate calculation methods is explored here. METHODS: Dose is obtained with an analytical pencil beam algorithm, using pre-calculated databases for integrated depth dose distributions and lateral penumbra. Dose rate is then calculated by combining dose information with the respective particle fluence (i.e., time information) using three dose-rate-calculation models (mean, instantaneous, and threshold-based). Dose rate predictions for all three models are compared to uHDR helium ion beam (145.7 MeV/u, range in water of approximatively 14.6 cm) measurements performed at the Heidelberg Ion Beam Therapy Center (HIT) with a diamond-detector prototype. Three scanning patterns (scanned or snake-like) and four field sizes are used to investigate the dose rate differences. RESULTS: Dose rate measurements were in good agreement with in-silico generated distributions using the here introduced engine. Relative differences in dose rate were below 10% for varying depths in water, from 2.3 to 14.8 cm, as well as laterally in a near Bragg peak area. In the entrance channel of the helium ion beam, dose rates were predicted within 7% on average for varying irradiated field sizes and scanning patterns. Large differences in absolute dose rate values were observed for varying calculation methods. For raster-scanned irradiations, the deviation between mean and threshold-based dose rate at the investigated point was found to increase with the field size up to 63% for a 10 mm × 10 mm field, while no significant differences were observed for snake-like scanning paths. CONCLUSIONS: This work introduces the first dose rate calculation engine benchmarked to instantaneous dose rate, enabling dose rate predictions for physical and biophysical experiments. Dose rate is greatly affected by varying particle fluence, scanning path, and calculation method, highlighting the need for a consensus among the FLASH community on how to calculate and report dose rate in the future. The here introduced engine could help provide the necessary details for the analysis of the sparing effect and uHDR conditions.


Subject(s)
Helium , Proton Therapy , Humans , Helium/therapeutic use , Radiotherapy Planning, Computer-Assisted/methods , Benchmarking , Monte Carlo Method , Proton Therapy/methods , Radiotherapy Dosage , Ions , Water
7.
J Appl Clin Med Phys ; 24(8): e13977, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37032540

ABSTRACT

Radiotherapy with protons or light ions can offer accurate and precise treatment delivery. Accurate knowledge of the stopping power ratio (SPR) distribution of the tissues in the patient is crucial for improving dose prediction in patients during planning. However, materials of uncertain stoichiometric composition such as dental implant and restoration materials can substantially impair particle therapy treatment planning due to related SPR prediction uncertainties. This study investigated the impact of using dual-energy computed tomography (DECT) imaging for characterizing and compensating for commonly used dental implant and restoration materials during particle therapy treatment planning. Radiological material parameters of ten common dental materials were determined using two different DECT techniques: sequential acquisition CT (SACT) and dual-layer spectral CT (DLCT). DECT-based direct SPR predictions of dental materials via spectral image data were compared to conventional single-energy CT (SECT)-based SPR predictions obtained via indirect CT-number-to-SPR conversion. DECT techniques were found overall to reduce uncertainty in SPR predictions in dental implant and restoration materials compared to SECT, although DECT methods showed limitations for materials containing elements of a high atomic number. To assess the influence on treatment planning, an anthropomorphic head phantom with a removable tooth containing lithium disilicate as a dental material was used. The results indicated that both DECT techniques predicted similar ranges for beams unobstructed by dental material in the head phantom. When ion beams passed through the lithium disilicate restoration, DLCT-based SPR predictions using a projection-based method showed better agreement with measured reference SPR values (range deviation: 0.2 mm) compared to SECT-based predictions. DECT-based SPR prediction may improve the management of certain non-tissue dental implant and restoration materials and subsequently increase dose prediction accuracy.


Subject(s)
Dental Implants , Proton Therapy , Humans , Tomography, X-Ray Computed/methods , Protons , Phantoms, Imaging
8.
Int J Mol Sci ; 24(6)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36982185

ABSTRACT

Reports of concurrent sparing of normal tissue and iso-effective treatment of tumors at ultra-high dose-rates (uHDR) have fueled the growing field of FLASH radiotherapy. However, iso-effectiveness in tumors is often deduced from the absence of a significant difference in their growth kinetics. In a model-based analysis, we investigate the meaningfulness of these indications for the clinical treatment outcome. The predictions of a previously benchmarked model of uHDR sparing in the "UNIfied and VERSatile bio response Engine" (UNIVERSE) are combined with existing models of tumor volume kinetics as well as tumor control probability (TCP) and compared to experimental data. The potential TCP of FLASH radiotherapy is investigated by varying the assumed dose-rate, fractionation schemes and oxygen concentration in the target. The developed framework describes the reported tumor growth kinetics appropriately, indicating that sparing effects could be present in the tumor but might be too small to be detected with the number of animals used. The TCP predictions show the possibility of substantial loss of treatment efficacy for FLASH radiotherapy depending on several variables, including the fractionation scheme, oxygen level, and DNA repair kinetics. The possible loss of TCP should be seriously considered when assessing the clinical viability of FLASH treatments.


Subject(s)
Neoplasms , Humans , Radiotherapy Dosage , Neoplasms/radiotherapy , Probability , Dose Fractionation, Radiation , Radiotherapy Planning, Computer-Assisted
9.
Int J Radiat Oncol Biol Phys ; 116(4): 935-948, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-36681200

ABSTRACT

PURPOSE: Helium ions offer intermediate physical and biological properties to the clinically used protons and carbon ions. This work presents the commissioning of the first clinical treatment planning system (TPS) for helium ion therapy with active beam delivery to prepare the first patients' treatment at the Heidelberg Ion-Beam Therapy Center (HIT). METHODS AND MATERIALS: Through collaboration between RaySearch Laboratories and HIT, absorbed and relative biological effectiveness (RBE)-weighted calculation methods were integrated for helium ion beam therapy with raster-scanned delivery in the TPS RayStation. At HIT, a modified microdosimetric kinetic biological model was chosen as reference biological model. TPS absorbed dose predictions were compared against measurements with several devices, using phantoms of different complexities, from homogeneous to heterogeneous anthropomorphic phantoms. RBE and RBE-weighted dose predictions of the TPS were verified against calculations with an independent RBE-weighted dose engine. The patient-specific quality assurance of the first treatment at HIT using helium ion beam with raster-scanned delivery is presented considering standard patient-specific measurements in a water phantom and 2 independent dose calculations with a Monte Carlo or an analytical-based engine. RESULTS: TPS predictions were consistent with dosimetric measurements and independent dose engines computations for absorbed and RBE-weighted doses. The mean difference between dose measurements to the TPS calculation was 0.2% for spread-out Bragg peaks in water. Verification of the first patient treatment TPS predictions against independent engines for both absorbed and RBE-weighted doses presents differences within 2% in the target and with a maximum deviation of 3.5% in the investigated critical regions of interest. CONCLUSIONS: Helium ion beam therapy has been successfully commissioned and introduced into clinical use. Through comprehensive validation of the absorbed and RBE-weighted dose predictions of the RayStation TPS, the first clinical TPS for helium ion therapy using raster-scanned delivery was employed to plan the first helium patient treatment at HIT.


Subject(s)
Heavy Ion Radiotherapy , Proton Therapy , Humans , Helium/therapeutic use , Radiotherapy Planning, Computer-Assisted/methods , Relative Biological Effectiveness , Radiotherapy Dosage , Monte Carlo Method , Protons , Water
10.
Med Phys ; 50(4): 2510-2524, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36542403

ABSTRACT

BACKGROUND: Monte Carlo (MC) simulations are considered the gold-standard for accuracy in radiotherapy dose calculation; however, general purpose MC engines are computationally demanding and require long runtimes. For this reason, several groups have recently developed fast MC systems dedicated mainly to photon and proton external beam therapy, affording both speed and accuracy. PURPOSE: To support research and clinical activities at the Heidelberg Ion-beam Therapy Center (HIT) with actively scanned helium ion beams, this work presents MonteRay, the first fast MC dose calculation engine for helium ion therapy. METHODS: MonteRay is a CPU MC dose calculation engine written in C++, capable of simulating therapeutic proton and helium ion beams. In this work, development steps taken to include helium ion beams in MonteRay are presented. A detailed description of the newly implemented physics models for helium ions, for example, for multiple coulomb scattering and inelastic nuclear interactions, is provided. MonteRay dose computations of helium ion beams are evaluated using a comprehensive validation dataset, including measurements of spread-out Bragg peaks (SOBPs) with varying penetration depths/field sizes, measurements with an anthropomorphic phantom and FLUKA simulations of a patient plan. Improvement in computational speed is demonstrated in comparison against reference FLUKA simulations. RESULTS: Dosimetric comparisons between MonteRay and measurements demonstrated good agreement. Comparing SOBPs at 5, 12.5, and 20 cm depth, mean absolute percent dose differences were 0.7%, 0.7%, and 1.4%, respectively. Comparison against measurements behind an anthropomorphic head phantom revealed mean absolute dose differences of about 1.2% (FLUKA: 1.5%) with per voxel errors ranging from -4.5% to 4.1% (FLUKA: -6% to 3%). Computed global 3%/3 mm 3D-gamma passing rates of ∼99% were achieved, exceeding those previously reported for an analytical dose engine. Comparisons against FLUKA simulations for a patient plan revealed local 2%/2 mm 3D-gamma passing rates of 98%. Compared to FLUKA in voxelized geometries, MonteRay saw run-time reductions ranging from 20× to 60×, depending on the beam's energy. CONCLUSIONS: MonteRay, the first fast MC engine dedicated to helium ion therapy, has been successfully developed with a focus on both speed and accuracy. Validations against dosimetric measurements in homogeneous and heterogeneous scenarios and FLUKA MC calculations have proven the validity of the physical models implemented. Timing comparisons have shown significant speedups between 20 and 60 when compared to FLUKA, making MonteRay viable for clinical routine. MonteRay will support research and clinical practice at HIT, for example, TPS development, validation and treatment design for upcoming clinical trials for raster-scanned helium ion therapy.


Subject(s)
Proton Therapy , Protons , Humans , Helium/therapeutic use , Benchmarking , Radiotherapy Planning, Computer-Assisted , Monte Carlo Method , Phantoms, Imaging , Radiotherapy Dosage
11.
Med Phys ; 49(9): 6082-6097, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35717613

ABSTRACT

PURPOSE: To present particle arc therapy treatments using single and multi-ion therapy optimization strategies with helium (4 He), carbon (12 C), oxygen (16 O), and neon (20 Ne) ion beams. METHODS AND MATERIALS: An optimization procedure and workflow were devised for spot-scanning hadron arc therapy (SHArc) treatment planning in the PRECISE (PaRticle thErapy using single and Combined Ion optimization StratEgies) treatment planning system (TPS). Physical and biological beam models were developed for helium, carbon, oxygen, and neon ions via FLUKA MC simulation. SHArc treatments were optimized using both single-ion (12 C, 16 O, or 20 Ne) and multi-ion therapy (16 O+4 He or 20 Ne+4 He) applying variable relative biological effectiveness (RBE) modeling using a modified microdosimetric kinetic model (mMKM) with (α/ß)x values of 2, 5, and 3.1 Gy, respectively, for glioblastoma, pancreatic adenocarcinoma, and prostate adenocarcinoma patient cases. Dose, effective dose, linear energy transfer (LET), and RBE were computed with the GPU-accelerated dose engine FRoG and dosimetric/biophysical attributes were evaluated in the context of conventional particle and photon-based therapies (e.g., volumetric modulated arc therapy [VMAT]). RESULTS: All SHArc plans met the target optimization goals (3GyRBE) and demonstrated increased target conformity and substantially lower low-dose bath to surrounding normal tissues than VMAT. SHArc plans using a singleion species (12 C, 16 O, or 20 Ne) exhibited favorable LET distributions with the highest-LET components centralized in the target volume, with values ranging from ∼80-170 keV/µm, ∼130-220 keV/µm, and ∼180-350 keV/µm for 12 C, 16 O, or 20 Ne, respectively, exceeding mean target LET of conventional particle therapy (12 C:∼55, 16 O:∼75 20 Ne:∼95 keV/µm). Multi-ion therapy with SHArc delivery (SHArcMIT ) provided a similar level of target LET enhancement as SHArc compared to conventional planning, however, with additional benefits of homogenous physical dose and RBE distributions. CONCLUSION: Here, we demonstrate that arc delivery of light and heavy ion beams, using either a single-ion species (12 C, 16 O, or 20 Ne) or combining two ions in a single fraction (16 O+4 He or 20 Ne+4 He) affords enhanced physical and biological distributions (e.g., LET) compared with conventional delivery with photons or particle beams. SHArc marks the first single- and multi-ion arc therapy treatment optimization approach using light and heavy ions.


Subject(s)
Adenocarcinoma , Pancreatic Neoplasms , Adenocarcinoma/drug therapy , Carbon/therapeutic use , Helium/therapeutic use , Humans , Ions , Male , Neon , Oxygen/therapeutic use , Radiotherapy Planning, Computer-Assisted/methods , Relative Biological Effectiveness
12.
Int J Mol Sci ; 23(11)2022 Jun 03.
Article in English | MEDLINE | ID: mdl-35682947

ABSTRACT

Accurate knowledge of the relative biological effectiveness (RBE) and its dependencies is crucial to support modern ion beam therapy and its further development. However, the influence of different dose rates of the reference radiation and ion beam are rarely considered. The ion beam RBE-model within our "UNIfied and VERSatile bio response Engine" (UNIVERSE) is extended by including DNA damage repair kinetics to investigate the impact of dose-rate effects on the predicted RBE. It was found that dose-rate effects increase with dose and biological effects saturate at high dose-rates, which is consistent with data- and model-based studies in the literature. In a comparison with RBE measurements from a high dose in-vivo study, the predictions of the presented modification were found to be improved in comparison to the previous version of UNIVERSE and existing clinical approaches that disregard dose-rate effects. Consequently, DNA repair kinetics and the different dose rates applied by the reference and ion beams might need to be considered in biophysical models to accurately predict the RBE. Additionally, this study marks an important step in the further development of UNIVERSE, extending its capabilities in giving theoretical guidance to support progress in ion beam therapy.


Subject(s)
DNA Repair , Kinetics , Relative Biological Effectiveness
13.
Front Oncol ; 12: 853495, 2022.
Article in English | MEDLINE | ID: mdl-35530308

ABSTRACT

In particle therapy treatment planning, dose calculation is conducted using patient-specific maps of tissue ion stopping power ratio (SPR) to predict beam ranges. Improving patient-specific SPR prediction is therefore essential for accurate dose calculation. In this study, we investigated the use of the Spectral CT 7500, a second-generation dual-layer spectral computed tomography (DLCT) system, as an alternative to conventional single-energy CT (SECT) for patient-specific SPR prediction. This dual-energy CT (DECT)-based method allows for the direct prediction of SPR from quantitative measurements of relative electron density and effective atomic number using the Bethe equation, whereas the conventional SECT-based method consists of indirect image data-based prediction through the conversion of calibrated CT numbers to SPR. The performance of the Spectral CT 7500 in particle therapy treatment planning was characterized by conducting a thorough analysis of its SPR prediction accuracy for both tissue-equivalent materials and common non-tissue implant materials. In both instances, DLCT was found to reduce uncertainty in SPR predictions compared to SECT. Mean deviations of 0.7% and 1.6% from measured SPR values were found for DLCT- and SECT-based predictions, respectively, in tissue-equivalent materials. Furthermore, end-to-end analyses of DLCT-based treatment planning were performed for proton, helium, and carbon ion therapies with anthropomorphic head and pelvic phantoms. 3D gamma analysis was performed with ionization chamber array measurements as the reference. DLCT-predicted dose distributions revealed higher passing rates compared to SECT-predicted dose distributions. In the DLCT-based treatment plans, measured distal-edge evaluation layers were within 1 mm of their predicted positions, demonstrating the accuracy of DLCT-based particle range prediction. This study demonstrated that the use of the Spectral CT 7500 in particle therapy treatment planning may lead to better agreement between planned and delivered dose compared to current clinical SECT systems.

14.
Int J Radiat Oncol Biol Phys ; 114(2): 334-348, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35490991

ABSTRACT

PURPOSE: To present biological dose optimization for particle arc therapy using helium and carbon ions. METHODS AND MATERIALS: Treatment planning and optimization procedures were developed for spot-scanning hadron arc (SHArc) delivery using the RayStation treatment planning system and FRoG dose engine. The SHArc optimization algorithm is applicable for charged particle beams and determines angle dependencies for spot and energy selection with three main initiatives: (i) achieve standard clinical optimization goals and constraints for target and organs at risk (OARs), (ii) target dose robustness, and (iii) increase linear energy transfer (LET) in the target volume. Three patient cases previously treated at the Heidelberg Ion-beam Therapy Center (HIT) were selected for evaluation of conventional versus arc delivery for the two clinical particle beams (helium [4He] and carbon [12C] ions): glioblastoma, prostate adenocarcinoma, and skull-base chordoma. Biological dose and dose-averaged LET (LETd) distributions for SHArc were evaluated against conventional planning techniques (volumetric modulated arc therapy [VMAT] and 2-field intensity modulated particle therapy) applying the modified microdosimetric kinetic model with (α/ß)x = 2 Gy. Clinical viability and deliverability were assessed via evaluation of plan quality, robustness, and irradiation time. RESULTS: For all investigated patient cases, SHArc treatment optimizations met planning goals and constraints for target coverage and OARs, exhibiting acceptable target coverage and reduced normal tissue volumes, with effective dose >10-GyRBE compared with conventional 2F planning. For carbon ions, LETd was increased in the target volume from ∼40-60 to ∼80-140 keV/µm for SHArc compared with conventional treatments. Favorable LETd distributions were possible with the SHArc approach, with maximum LETd in clinical target volume/gross tumor volume and potential reductions of high-LET regions in normal tissues and OARs. Compared with VMAT, SHArc affords substantial reductions in normal tissue dose (40%-70%). CONCLUSIONS: SHArc therapy offers potential treatment benefits such as increased normal tissue sparing from higher doses >10-GyRBE, enhanced target LETd, and potential reduction in high-LET components in OARs. Findings justify further development of robust SHArc treatment planning toward potential clinical translation.


Subject(s)
Proton Therapy , Radiotherapy, Intensity-Modulated , Carbon/therapeutic use , Helium/therapeutic use , Humans , Ions/therapeutic use , Male , Organs at Risk/radiation effects , Proton Therapy/methods , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods
15.
Phys Med Biol ; 67(15)2022 08 05.
Article in English | MEDLINE | ID: mdl-35395649

ABSTRACT

Helium ion beam therapy for the treatment of cancer was one of several developed and studied particle treatments in the 1950s, leading to clinical trials beginning in 1975 at the Lawrence Berkeley National Laboratory. The trial shutdown was followed by decades of research and clinical silence on the topic while proton and carbon ion therapy made debuts at research facilities and academic hospitals worldwide. The lack of progression in understanding the principle facets of helium ion beam therapy in terms of physics, biological and clinical findings persists today, mainly attributable to its highly limited availability. Despite this major setback, there is an increasing focus on evaluating and establishing clinical and research programs using helium ion beams, with both therapy and imaging initiatives to supplement the clinical palette of radiotherapy in the treatment of aggressive disease and sensitive clinical cases. Moreover, due its intermediate physical and radio-biological properties between proton and carbon ion beams, helium ions may provide a streamlined economic steppingstone towards an era of widespread use of different particle species in light and heavy ion therapy. With respect to the clinical proton beams, helium ions exhibit superior physical properties such as reduced lateral scattering and range straggling with higher relative biological effectiveness (RBE) and dose-weighted linear energy transfer (LETd) ranging from ∼4 keVµm-1to ∼40 keVµm-1. In the frame of heavy ion therapy using carbon, oxygen or neon ions, where LETdincreases beyond 100 keVµm-1, helium ions exhibit similar physical attributes such as a sharp lateral penumbra, however, with reduced radio-biological uncertainties and without potentially spoiling dose distributions due to excess fragmentation of heavier ion beams, particularly for higher penetration depths. This roadmap presents an overview of the current state-of-the-art and future directions of helium ion therapy: understanding physics and improving modeling, understanding biology and improving modeling, imaging techniques using helium ions and refining and establishing clinical approaches and aims from learned experience with protons. These topics are organized and presented into three main sections, outlining current and future tasks in establishing clinical and research programs using helium ion beams-A. Physics B. Biological and C. Clinical Perspectives.


Subject(s)
Heavy Ion Radiotherapy , Proton Therapy , Carbon/therapeutic use , Heavy Ion Radiotherapy/methods , Helium/therapeutic use , Ions , Protons , Relative Biological Effectiveness
16.
Radiother Oncol ; 170: 224-230, 2022 05.
Article in English | MEDLINE | ID: mdl-35367526

ABSTRACT

BACKGROUND AND PURPOSE: Determination of the relative biological effectiveness (RBE) of helium ions as a function of linear energy transfer (LET) for single and split doses using the rat cervical spinal cord as model system for late-responding normal tissue. MATERIAL AND METHODS: The rat cervical spinal cord was irradiated at four different positions within a 6 cm spread-out Bragg-peak (SOBP) (LET 2.9, 9.4, 14.4 and 20.7 keV/µm) using increasing levels of single or split doses of helium ions. Dose-response curves were determined and based on TD50-values (dose at 50% effect probability using paresis II as endpoint), RBE-values were derived for the endpoint of radiation-induced myelopathy. RESULTS: With increasing LET, RBE-values increased from 1.13 ± 0.04 to 1.42 ± 0.05 (single dose) and 1.12 ± 0.03 to 1.50 ± 0.04 (split doses) as TD50-values decreased from 21.7 ± 0.3 Gy to 17.3 ± 0.3 Gy (single dose) and 30.6 ± 0.3 Gy to 22.9 ± 0.3 Gy (split doses), respectively. RBE-models (LEM I and IV, mMKM) deviated differently for single and split doses but described the RBE variation in the high-LET region sufficiently accurate. CONCLUSION: This study established the LET-dependence of the RBE for late effects in the central nervous system after single and split doses of helium ions. The results extend the existing database for protons and carbon ions and allow systematic testing of RBE-models. While the RBE-values of helium were generally lower than for carbon ions, the increase at the distal edge of the Bragg-peak was larger than for protons, making detailed RBE-modeling necessary.


Subject(s)
Helium , Linear Energy Transfer , Animals , Carbon , Dose-Response Relationship, Radiation , Humans , Ions , Protons , Rats , Relative Biological Effectiveness , Spinal Cord
17.
Int J Mol Sci ; 23(6)2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35328377

ABSTRACT

The impact of the exact temporal pulse structure on the potential cell and tissue sparing of ultra-high dose-rate irradiation applied in FLASH studies has gained increasing attention. A previous version of our biophysical mechanistic model (UNIVERSE: UNIfied and VERSatile bio response Engine), based on the oxygen depletion hypothesis, has been extended in this work by considering oxygen-dependent damage fixation dynamics on the sub-milliseconds scale and introducing an explicit implementation of the temporal pulse structure. The model successfully reproduces in vitro experimental data on the fast kinetics of the oxygen effect in irradiated mammalian cells. The implemented changes result in a reduction in the assumed amount of oxygen depletion. Furthermore, its increase towards conventional dose-rates is parameterized based on experimental data from the literature. A recalculation of previous benchmarks shows that the model retains its predictive power, while the assumed amount of depleted oxygen approaches measured values. The updated UNIVERSE could be used to investigate the impact of different combinations of pulse structure parameters (e.g., dose per pulse, pulse frequency, number of pulses, etc.), thereby aiding the optimization of potential clinical application and the development of suitable accelerators.


Subject(s)
Mammals , Oxygen , Animals , Kinetics , Radiotherapy Dosage
18.
Radiat Oncol ; 17(1): 23, 2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35120547

ABSTRACT

BACKGROUND: To develop an auxiliary GPU-accelerated proton therapy (PT) dose and LETd engine for the IBA Proteus®ONE PT system. A pediatric low-grade glioma case study is reported using FRoG during clinical practice, highlighting potential treatment planning insights using variable RBE dose (DvRBE) and LETd as indicators for clinical decision making in PT. METHODS: The physics engine for FRoG has been modified for compatibility with Proteus®ONE PT centers. Subsequently, FRoG was installed and commissioned at NPTC. Dosimetric validation was performed against measurements and the clinical TPS, RayStation (RS-MC). A head patient cohort previously treated at NPTC was collected and FRoG forward calculations were compared against RS-MC for evaluation of 3D-Γ analysis and dose volume histogram (DVH) results. Currently, treatment design at NPTC is supported with fast variable RBE and LETd calculation and is reported in a representative case for pediatric low-grade glioma. RESULTS: Simple dosimetric tests against measurements of iso-energy layers and spread-out Bragg Peaks in water verified accuracy of FRoG and RS-MC. Among the patient cohort, average 3D-Γ applying 2%/2 mm, 3%/1.5 mm and 5%/1 mm were > 97%. DVH metrics for targets and OARs between FRoG and RayStation were in good agreement, with ∆D50,CTV and ∆D2,OAR both ⪅1%. The pediatric case report demonstrated implications of different beam arrangements on DvRBE and LETd distributions. From initial planning in RayStation sharing identical optimization constraints, FRoG analysis led to plan selection of the most conservative approach, i.e., minimized DvRBE,max and LETd,max in OARs, to avoid optical system toxicity effects (i.e., vision loss). CONCLUSION: An auxiliary dose calculation system was successfully integrated into the clinical workflow at a Proteus®ONE IBA facility, in excellent agreement with measurements and RS-MC. FRoG may lead to further insight on DvRBE and LETd implications to help clinical decision making, better understand unexpected toxicities and establish novel clinical procedures with metrics currently absent from the standard clinical TPS.


Subject(s)
Optic Nerve Glioma/radiotherapy , Proton Therapy/methods , Child , Humans , Radiotherapy Dosage
19.
Int J Radiat Oncol Biol Phys ; 113(3): 614-623, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35196536

ABSTRACT

PURPOSE: To investigate brain tissue response to ultra-high dose rate (uHDR, FLASH) and standard dose rate (SDR) proton irradiations in the Bragg peak region. METHODS AND MATERIALS: Active scanning uHDR delivery was established for proton beams for investigation of dose rate effects between clinical SDR and uHDR at ∼10 Gy in the Bragg peak region (dose-averaged linear energy transfer [LETD] ranging from 4.5 to 10.2 keV µm-1 ). Radiation- induced injury of neuronal tissue was assessed by studying the DNA double strand break repair kinetics surrogated by nuclear γH2AX staining (radiation induced foci [RIF]), microvascular density and structural integrity (MVD, CD31+ endothelium), and inflammatory microenvironmental response (CD68+ microglia/macrophages and high mobility group box protein 1[HMGB]) in healthy C57BL/6 mouse brains. RESULTS: Averaged dose rates achieved were 0.17 Gy/s (SDR) and 120 Gy/s (uHDR). The fraction of RIF-positive cells increased after SDR ∼10-fold, whereas a significantly lower fraction of RIF-positive cells was found after uHDR versus SDR (∼2 fold, P < .0001). Moreover, uHDR substantially preserved the microvascular architecture and reduced microglia/macrophage regulated associated inflammation as compared with SDR. CONCLUSIONS: The feasibility of uHDR raster scanning proton irradiation is demonstrated to elicit FLASH sparing neuroprotective effects compared to SDR in a preclinical in vivo model.


Subject(s)
Neuroprotective Agents , Proton Therapy , Radiation Injuries , Animals , Linear Energy Transfer , Mice , Mice, Inbred C57BL , Proton Therapy/methods , Protons
20.
J Appl Clin Med Phys ; 23(1): e13465, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34724327

ABSTRACT

Pretreatment computed tomography (CT) imaging is an essential component of the particle therapy treatment planning chain. Treatment planning and optimization with charged particles require accurate and precise estimations of ion beam range in tissues, characterized by the stopping power ratio (SPR). Reduction of range uncertainties arising from conventional CT-number-to-SPR conversion based on single-energy CT (SECT) imaging is of importance for improving clinical practice. Here, the application of a novel imaging and computational methodology using dual-layer spectral CT (DLCT) was performed toward refining patient-specific SPR estimates. A workflow for DLCT-based treatment planning was devised to evaluate SPR prediction for proton, helium, and carbon ion beam therapy planning in the brain. DLCT- and SECT-based SPR predictions were compared in homogeneous and heterogeneous anatomical regions. This study included eight patients scanned for diagnostic purposes with a DLCT scanner. For each patient, four different treatment plans were created, simulating tumors in different parts of the brain. For homogeneous anatomical regions, mean SPR differences of about 1% between the DLCT- and SECT-based approaches were found. In plans of heterogeneous anatomies, relative (absolute) proton range shifts of 0.6% (0.4 mm) in the mean and up to 4.4% (2.1 mm) at the distal fall-off were observed. In the investigated cohort, 12% of the evaluated organs-at-risk (OARs) presented differences in mean or maximum dose of more than 0.5 Gy (RBE) and up to 6.8 Gy (RBE) over the entire treatment. Range shifts and dose differences in OARs between DLCT and SECT in helium and carbon ion treatment plans were similar to protons. In the majority of investigated cases (75th percentile), SECT- and DLCT-based range estimations were within 0.6 mm. Nonetheless, the magnitude of patient-specific range deviations between SECT and DLCT was clinically relevant in heterogeneous anatomical sites, suggesting further study in larger, more diverse cohorts. Results indicate that patients with brain tumors may benefit from DLCT-based treatment planning.


Subject(s)
Brain Neoplasms , Proton Therapy , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/radiotherapy , Carbon , Helium , Humans , Phantoms, Imaging , Protons , Radiotherapy Planning, Computer-Assisted , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL