Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; : e202407276, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997232

ABSTRACT

Tuberculosis remains a leading cause of death from a single infection worldwide. Drug resistance to existing and even new antimycobacterials calls for research into novel targets and unexplored mechanisms of action. Recently we reported on the development of tight-binding inhibitors of Mycobacterium tuberculosis (Mtb) lipoamide dehydrogenase (Lpd), which selectively inhibit the bacterial but not the human enzyme based on a differential modality of inhibitor interaction with these targets. Here we report on the striking improvement in inhibitor residence time on the Mtb enzyme associated with scaffold progression from an indazole to 2-cyanoindole. Cryo-EM of Lpd with the bound 2-cyanoindole inhibitor 19 confirmed displacement of the buried water molecule deep in the binding channel with a cyano group. The ensuing hours-long  improvement in on-target residence time is associated with enhanced antibacterial activity in axenic culture and in primary mouse macrophages. Resistance to 2-cyanoindole inhibitors involves mutations within the inhibitor binding site that have little effect on inhibitor affinity but change the modality of inhibitor-target interaction, resulting in fast dissociation from Lpd. These findings underscore that on-target residence time is a major determinant of antibacterial activity and in vivo efficacy.

2.
ACS Med Chem Lett ; 15(4): 524-532, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38628784

ABSTRACT

Eleven-nineteen leukemia (ENL) is an epigenetic reader protein that drives oncogenic transcriptional programs in acute myeloid leukemia (AML). AML is one of the deadliest hematopoietic malignancies, with an overall 5-year survival rate of 27%. The epigenetic reader activity of ENL is mediated by its YEATS domain that binds to acetyl and crotonyl marks on histone tails and colocalizes with promoters of actively transcribed genes that are essential for leukemia. Prior to the discovery of TDI-11055, existing inhibitors of ENL YEATS showed in vitro potency, but had not shown efficacy in in vivo animal models. During the course of the medicinal chemistry campaign described here, we identified ENL YEATS inhibitor TDI-11055 that has an improved pharmacokinetic profile and is appropriate for in vivo evaluation of the ENL YEATS inhibition mechanism in AML.

4.
J Chem Inf Model ; 63(9): 2828-2841, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37060320

ABSTRACT

Free energy perturbation is a computational technique that can be used to predict how small changes to an inhibitor structure will affect the binding free energy to its target. In this paper, we describe the utility of free energy perturbation with FEP+ in the hit-to-lead stage of a drug discovery project targeting soluble adenyl cyclase. The project was structurally enabled by X-ray crystallography throughout. We employed free energy perturbation to first scaffold hop to a preferable chemotype and then optimize the binding affinity to sub-nanomolar levels while retaining druglike properties. The results illustrate that effective use of free energy perturbation can enable a drug discovery campaign to progress rapidly from hit to lead, facilitating proof-of-concept studies that enable target validation.


Subject(s)
Adenylyl Cyclases , Drug Discovery , Thermodynamics , Entropy
6.
Nat Commun ; 14(1): 637, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36788210

ABSTRACT

Nearly half of all pregnancies are unintended; thus, existing family planning options are inadequate. For men, the only choices are condoms and vasectomy, and most current efforts to develop new contraceptives for men impact sperm development, meaning that contraception requires months of continuous pretreatment. Here, we provide proof-of-concept for an innovative strategy for on-demand contraception, where a man would take a birth control pill shortly before sex, only as needed. Soluble adenylyl cyclase (sAC) is essential for sperm motility and maturation. We show a single dose of a safe, acutely-acting sAC inhibitor with long residence time renders male mice temporarily infertile. Mice exhibit normal mating behavior, and full fertility returns the next day. These studies define sAC inhibitors as leads for on-demand contraceptives for men, and they provide in vivo proof-of-concept for previously untested paradigms in contraception; on-demand contraception after just a single dose and pharmacological contraception for men.


Subject(s)
Adenylyl Cyclase Inhibitors , Adenylyl Cyclases , Contraceptive Agents, Male , Animals , Female , Humans , Male , Mice , Pregnancy , Contraception , Contraceptive Agents, Male/pharmacology , Semen , Sperm Motility , Adenylyl Cyclase Inhibitors/pharmacology
7.
J Med Chem ; 66(2): 1484-1508, 2023 01 26.
Article in English | MEDLINE | ID: mdl-36630286

ABSTRACT

With increasing reports of resistance to artemisinins and artemisinin-combination therapies, targeting the Plasmodium proteasome is a promising strategy for antimalarial development. We recently reported a highly selective Plasmodium falciparum proteasome inhibitor with anti-malarial activity in the humanized mouse model. To balance the permeability of the series of macrocycles with other drug-like properties, we conducted further structure-activity relationship studies on a biphenyl ether-tethered macrocyclic scaffold. Extensive SAR studies around the P1, P3, and P5 groups and peptide backbone identified compound TDI-8414. TDI-8414 showed nanomolar antiparasitic activity, no toxicity to HepG2 cells, high selectivity against the Plasmodium proteasome over the human constitutive proteasome and immunoproteasome, improved solubility and PAMPA permeability, and enhanced metabolic stability in microsomes and plasma of both humans and mice.


Subject(s)
Antimalarials , Plasmodium , Humans , Animals , Mice , Antimalarials/pharmacology , Antimalarials/chemistry , Proteasome Endopeptidase Complex/metabolism , Structure-Activity Relationship , Plasmodium falciparum/metabolism , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/chemistry
8.
J Med Chem ; 65(22): 15208-15226, 2022 11 24.
Article in English | MEDLINE | ID: mdl-36346696

ABSTRACT

Soluble adenylyl cyclase (sAC: ADCY10) is an enzyme involved in intracellular signaling. Inhibition of sAC has potential therapeutic utility in a number of areas. For example, sAC is integral to successful male fertility: sAC activation is required for sperm motility and ability to undergo the acrosome reaction, two processes central to oocyte fertilization. Pharmacologic evaluation of existing sAC inhibitors for utility as on-demand, nonhormonal male contraceptives suggested that both high intrinsic potency, fast on and slow dissociation rates are essential design elements for successful male contraceptive applications. During the course of the medicinal chemistry campaign described here, we identified sAC inhibitors that fulfill these criteria and are suitable for in vivo evaluation of diverse sAC pharmacology.


Subject(s)
Adenylyl Cyclases , Sperm Motility , Animals , Male , Adenylyl Cyclases/drug effects , Adenylyl Cyclases/metabolism , Oocytes/metabolism , Signal Transduction/physiology , Sperm Motility/drug effects , Contraceptive Agents, Male/chemistry , Contraceptive Agents, Male/pharmacology
9.
Front Physiol ; 13: 1013845, 2022.
Article in English | MEDLINE | ID: mdl-36246105

ABSTRACT

In mammalian cells, 10 different adenylyl cyclases produce the ubiquitous second messenger, cyclic adenosine monophosphate (cAMP). Amongst these cAMP-generating enzymes, bicarbonate (HCO3 -)-regulated soluble adenylyl cyclase (sAC; ADCY10) is uniquely essential in sperm for reproduction. For this reason, sAC has been proposed as a potential therapeutic target for non-hormonal contraceptives for men. Here, we describe key sAC-focused in vitro assays to identify and characterize sAC inhibitors for therapeutic use. The affinity and binding kinetics of an inhibitor can greatly influence in vivo efficacy, therefore, we developed improved assays for assessing these efficacy defining features.

10.
Cancer Discov ; 12(11): 2684-2709, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36053276

ABSTRACT

The chromatin reader eleven-nineteen leukemia (ENL) has been identified as a critical dependency in acute myeloid leukemia (AML), but its therapeutic potential remains unclear. We describe a potent and orally bioavailable small-molecule inhibitor of ENL, TDI-11055, which displaces ENL from chromatin by blocking its YEATS domain interaction with acylated histones. Cell lines and primary patient samples carrying MLL rearrangements or NPM1 mutations are responsive to TDI-11055. A CRISPR-Cas9-mediated mutagenesis screen uncovers an ENL mutation that confers resistance to TDI-11055, validating the compound's on-target activity. TDI-11055 treatment rapidly decreases chromatin occupancy of ENL-associated complexes and impairs transcription elongation, leading to suppression of key oncogenic gene expression programs and induction of differentiation. In vivo treatment with TDI-11055 blocks disease progression in cell line- and patient-derived xenograft models of MLL-rearranged and NPM1-mutated AML. Our results establish ENL displacement from chromatin as a promising epigenetic therapy for molecularly defined AML subsets and support the clinical translation of this approach. SIGNIFICANCE: AML is a poor-prognosis disease for which new therapeutic approaches are desperately needed. We developed an orally bioavailable inhibitor of ENL, demonstrated its potent efficacy in MLL-rearranged and NPM1-mutated AML, and determined its mechanisms of action. These biological and chemical insights will facilitate both basic research and clinical translation. This article is highlighted in the In This Issue feature, p. 2483.


Subject(s)
Leukemia, Myeloid, Acute , Lysine , Humans , Leukemia, Myeloid, Acute/genetics , Histones/metabolism , Chromatin , Myeloid-Lymphoid Leukemia Protein/metabolism
11.
J Med Chem ; 65(13): 9350-9375, 2022 07 14.
Article in English | MEDLINE | ID: mdl-35727231

ABSTRACT

With over 200 million cases and close to half a million deaths each year, malaria is a threat to global health, particularly in developing countries. Plasmodium falciparum, the parasite that causes the most severe form of the disease, has developed resistance to all antimalarial drugs. Resistance to the first-line antimalarial artemisinin and to artemisinin combination therapies is widespread in Southeast Asia and is emerging in sub-Saharan Africa. The P. falciparum proteasome is an attractive antimalarial target because its inhibition kills the parasite at multiple stages of its life cycle and restores artemisinin sensitivity in parasites that have become resistant through mutation in Kelch K13. Here, we detail our efforts to develop noncovalent, macrocyclic peptide malaria proteasome inhibitors, guided by structural analysis and pharmacokinetic properties, leading to a potent, species-selective, metabolically stable inhibitor.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Antimalarials/pharmacology , Antimalarials/therapeutic use , Artemisinins/pharmacology , Drug Resistance , Humans , Malaria, Falciparum/drug therapy , Peptides/therapeutic use , Plasmodium falciparum , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/therapeutic use , Protozoan Proteins/genetics
12.
Bioorg Med Chem Lett ; 75: 128808, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35609741

ABSTRACT

Novel bacterial topoisomerase inhibitors (NBTIs) are the newest members of gyrase inhibitor broad-spectrum antibacterial agents, represented by the most advanced member, gepotidacin, a 4-amino-piperidine linked NBTI, which is undergoing phase III clinical trials for treatment of urinary tract infections (UTI). We have extensively reported studies on oxabicyclooctane linked NBTIs, including AM-8722. The present study summarizes structure activity relationship (SAR) of AM-8722 leading to identification of 7-fluoro-1-cyanomethyl-1,5-naphthyridin-2-one based NBTI (16, AM-8888) with improved potency and spectrum (MIC values of 0.016-4 µg/mL), with Pseudomonas aeruginosa being the least sensitive strain (MIC 4 µg/mL).


Subject(s)
Anti-Bacterial Agents , Topoisomerase Inhibitors , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , DNA Gyrase/metabolism , DNA Topoisomerase IV , Microbial Sensitivity Tests , Staphylococcus aureus/metabolism , Structure-Activity Relationship , Thioinosine/analogs & derivatives , Topoisomerase II Inhibitors/chemistry , Topoisomerase II Inhibitors/pharmacology , Topoisomerase Inhibitors/chemistry , Topoisomerase Inhibitors/pharmacology
13.
ACS Med Chem Lett ; 13(3): 377-387, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35300079

ABSTRACT

Aberrant gene-silencing through dysregulation of polycomb protein activity has emerged as an important oncogenic mechanism in cancer, implicating polycomb proteins as important therapeutic targets. Recently, an inhibitor targeting EZH2, the methyltransferase component of PRC2, received U.S. Food and Drug Administration approval following promising clinical responses in cancer patients. However, the current array of EZH2 inhibitors have poor brain penetrance, limiting their use in patients with central nervous system malignancies, a number of which have been shown to be sensitive to EZH2 inhibition. To address this need, we have identified a chemical strategy, based on computational modeling of pyridone-containing EZH2 inhibitor scaffolds, to minimize P-glycoprotein activity, and here we report the first brain-penetrant EZH2 inhibitor, TDI-6118 (compound 5). Additionally, in the course of our attempts to optimize this compound, we discovered TDI-11904 (compound 21), a novel, highly potent, and peripherally active EZH2 inhibitor based on a 7 member ring structure.

14.
Chembiochem ; 23(8): e202100671, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35181980

ABSTRACT

A drug accelerator that partners the creative power of academic scientists with drug discovery professionals to consistently advance groundbreaking biological discoveries would be transformational. One such model, the Tri-Institutional Therapeutics Discovery Institute, evolved a series of best practices for identifying, selecting, executing, and completing academic-initiated drug discovery projects, is described.


Subject(s)
Academies and Institutes , Drug Discovery
15.
ACS Med Chem Lett ; 12(8): 1283-1287, 2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34413957

ABSTRACT

Soluble adenylyl cyclase (sAC) has gained attention as a potential therapeutic target given the role of this enzyme in intracellular signaling. We describe successful efforts to design improved sAC inhibitors amenable for in vivo interrogation of sAC inhibition to assess its potential therapeutic applications. This work culminated in the identification of TDI-10229 (12), which displays nanomolar inhibition of sAC in both biochemical and cellular assays and exhibits mouse pharmacokinetic properties sufficient to warrant its use as an in vivo tool compound.

16.
Mol Hum Reprod ; 27(9)2021 09 01.
Article in English | MEDLINE | ID: mdl-34463764

ABSTRACT

Soluble adenylyl cyclase (sAC: ADCY10) has been genetically confirmed to be essential for male fertility in mice and humans. In mice, ex vivo studies of dormant, caudal epididymal sperm demonstrated that sAC is required for initiating capacitation and activating motility. We now use an improved sAC inhibitor, TDI-10229, for a comprehensive analysis of sAC function in mouse and human sperm. In contrast to caudal epididymal mouse sperm, human sperm are collected post-ejaculation, after sAC activity has already been stimulated. In addition to preventing the capacitation-induced stimulation of sAC and protein kinase A activities, tyrosine phosphorylation, alkalinization, beat frequency and acrosome reaction in dormant mouse sperm, sAC inhibitors interrupt each of these capacitation-induced changes in ejaculated human sperm. Furthermore, we show for the first time that sAC is required during acrosomal exocytosis in mouse and human sperm. These data define sAC inhibitors as candidates for non-hormonal, on-demand contraceptives suitable for delivery via intravaginal devices in women.


Subject(s)
Adenylyl Cyclase Inhibitors/pharmacology , Fertilization/drug effects , Spermatozoa/drug effects , Adenylyl Cyclases/genetics , Adenylyl Cyclases/physiology , Animals , Cells, Cultured , Female , Fertilization/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Mice, Knockout , Pregnancy , Spermatozoa/physiology
17.
J Med Chem ; 64(9): 6262-6272, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33949190

ABSTRACT

Treatment of tuberculosis (TB) currently takes at least 6 months. Latent Mycobacterium tuberculosis (Mtb) is phenotypically tolerant to most anti-TB drugs. A key hypothesis is that drugs that kill nonreplicating (NR) Mtb may shorten treatment when used in combination with conventional drugs. The Mtb proteasome (Mtb20S) could be such a target because its pharmacological inhibition kills NR Mtb and its genetic deletion renders Mtb unable to persist in mice. Here, we report a series of macrocyclic peptides that potently and selectively target the Mtb20S over human proteasomes, including macrocycle 6. The cocrystal structure of macrocycle 6 with Mtb20S revealed structural bases for the species selectivity. Inhibition of 20S within Mtb by 6 dose dependently led to the accumulation of Pup-tagged GFP that is degradable but resistant to depupylation and death of nonreplicating Mtb under nitrosative stress. These results suggest that compounds of this class have the potential to develop as anti-TB therapeutics.


Subject(s)
Mycobacterium tuberculosis/enzymology , Peptides, Cyclic/pharmacology , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/chemistry , Proteasome Inhibitors/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Drug Design , Humans , Mycobacterium tuberculosis/drug effects , Peptides, Cyclic/chemistry , Structure-Activity Relationship
18.
Cancer Res ; 81(8): 2002-2014, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33632898

ABSTRACT

Pancreatic adenocarcinoma (PDAC) epitomizes a deadly cancer driven by abnormal KRAS signaling. Here, we show that the eIF4A RNA helicase is required for translation of key KRAS signaling molecules and that pharmacological inhibition of eIF4A has single-agent activity against murine and human PDAC models at safe dose levels. EIF4A was uniquely required for the translation of mRNAs with long and highly structured 5' untranslated regions, including those with multiple G-quadruplex elements. Computational analyses identified these features in mRNAs encoding KRAS and key downstream molecules. Transcriptome-scale ribosome footprinting accurately identified eIF4A-dependent mRNAs in PDAC, including critical KRAS signaling molecules such as PI3K, RALA, RAC2, MET, MYC, and YAP1. These findings contrast with a recent study that relied on an older method, polysome fractionation, and implicated redox-related genes as eIF4A clients. Together, our findings highlight the power of ribosome footprinting in conjunction with deep RNA sequencing in accurately decoding translational control mechanisms and define the therapeutic mechanism of eIF4A inhibitors in PDAC. SIGNIFICANCE: These findings document the coordinate, eIF4A-dependent translation of RAS-related oncogenic signaling molecules and demonstrate therapeutic efficacy of eIF4A blockade in pancreatic adenocarcinoma.


Subject(s)
Adenocarcinoma/metabolism , Eukaryotic Initiation Factor-4A/metabolism , Pancreatic Neoplasms/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , RNA, Messenger/metabolism , Ribosomes/metabolism , 5' Untranslated Regions , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adenocarcinoma/drug therapy , Animals , Cell Line, Tumor , Cycloheximide/pharmacology , Eukaryotic Initiation Factor-4A/antagonists & inhibitors , G-Quadruplexes , Genes, ras/genetics , Humans , Mice , Mice, Nude , Mutation , Neoplasm Transplantation , Oxidation-Reduction , Pancreatic Neoplasms/drug therapy , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Polyribosomes/metabolism , Protein Biosynthesis , Protein Synthesis Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-met/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , RNA Helicases , Sequence Analysis, RNA , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome , Triterpenes/pharmacology , YAP-Signaling Proteins , rac GTP-Binding Proteins/genetics , rac GTP-Binding Proteins/metabolism , ral GTP-Binding Proteins/genetics , ral GTP-Binding Proteins/metabolism , RAC2 GTP-Binding Protein
19.
ACS Infect Dis ; 7(2): 435-444, 2021 02 12.
Article in English | MEDLINE | ID: mdl-33527832

ABSTRACT

Tuberculosis remains a leading cause of death from a single bacterial infection worldwide. Efforts to develop new treatment options call for expansion into an unexplored target space to expand the drug pipeline and bypass resistance to current antibiotics. Lipoamide dehydrogenase is a metabolic and antioxidant enzyme critical for mycobacterial growth and survival in mice. Sulfonamide analogs were previously identified as potent and selective inhibitors of mycobacterial lipoamide dehydrogenase in vitro but lacked activity against whole mycobacteria. Here we present the development of analogs with improved permeability, potency, and selectivity, which inhibit the growth of Mycobacterium tuberculosis in axenic culture on carbohydrates and within mouse primary macrophages. They increase intrabacterial pyruvate levels, supporting their on-target activity within mycobacteria. Distinct modalities of binding between the mycobacterial and human enzymes contribute to improved potency and hence selectivity through induced-fit tight binding interactions within the mycobacterial but not human enzyme, as indicated by kinetic analysis and crystallography.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Animals , Anti-Bacterial Agents/therapeutic use , Dihydrolipoamide Dehydrogenase/metabolism , Humans , Kinetics , Mice , Mycobacterium tuberculosis/metabolism , Tuberculosis/drug therapy
20.
Angew Chem Int Ed Engl ; 60(17): 9279-9283, 2021 04 19.
Article in English | MEDLINE | ID: mdl-33433953

ABSTRACT

Plasmodium falciparum proteasome (Pf20S) inhibitors are active against Plasmodium at multiple stages-erythrocytic, gametocyte, liver, and gamete activation stages-indicating that selective Pf20S inhibitors possess the potential to be therapeutic, prophylactic, and transmission-blocking antimalarials. Starting from a reported compound, we developed a noncovalent, macrocyclic peptide inhibitor of the malarial proteasome with high species selectivity and improved pharmacokinetic properties. The compound demonstrates specific, time-dependent inhibition of the ß5 subunit of the Pf20S, kills artemisinin-sensitive and artemisinin-resistant P. falciparum isolates in vitro and reduces parasitemia in humanized, P. falciparum-infected mice.


Subject(s)
Antimalarials/pharmacology , Drug Development , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/pharmacology , Animals , Antimalarials/chemical synthesis , Antimalarials/chemistry , Malaria, Falciparum/metabolism , Mice , Models, Molecular , Molecular Conformation , Parasitic Sensitivity Tests , Plasmodium falciparum/enzymology , Proteasome Inhibitors/chemical synthesis , Proteasome Inhibitors/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL