Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 107(24): 7673-7684, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37815614

ABSTRACT

Sustainable approaches to circular economy in animal agriculture are still poorly developed. Here, we report an approach to reduce gaseous emissions of CO2 and NH3 from animal housing while simultaneously using them to produce value-added biomass. To this end, a cone-shaped, helical photobioreactor was developed that can be integrated into animal housing by being freely suspended, thereby combining a small footprint with a physically robust design. The photobioreactor was coupled with the exhaust air of a chicken house to allow continuous cultivation of a mixed culture of Arthrospira spec. (Spirulina). Continuous quantification of CO2 and NH3 concentration showed that the coupled algae reactor effectively purifies the exhaust air from the chicken house while producing algal biomass. Typical production rates of greater than 0.3 g/l*day dry mass were obtained, and continuous operation was possible for several weeks. Morphological, biochemical, and genomic characterization of Spirulina cultures yielded insights into the dynamics and metabolic processes of the microbial community. We anticipate that further optimization of this approach will provide new opportunities for the generation of value-added products from gaseous CO2 and NH3 waste emissions, linking resource-efficient production of microalgae with simultaneous sequestration of animal emissions. KEY POINTS: • Coupling a bioreactor with exhaust gases of chicken coop for production of biomass. • Spirulina mixed culture removes CO2 and NH3 from chicken house emissions. • High growth rates and biodiversity adaptation for nitrogen metabolism. Towards a sustainable circular economy in livestock farming. The functional coupling of a helical tube photobioreactor with exhaust air from a chicken house enabled the efficient cultivation of Spirulina microalgae while simultaneously sequestering the animals' CO2 and NH3 emissions.


Subject(s)
Microalgae , Spirulina , Animals , Gases/metabolism , Carbon Dioxide/metabolism , Photobioreactors , Biomass , Housing, Animal , Chickens , Microalgae/metabolism
2.
NPJ Biofilms Microbiomes ; 9(1): 57, 2023 08 21.
Article in English | MEDLINE | ID: mdl-37604827

ABSTRACT

The plethora of stress factors that can damage microbial cells has evolved sophisticated stress response mechanisms. While existing bioreporters can monitor individual responses, sensors for detecting multimodal stress responses in living microorganisms are still lacking. Orthogonally detectable red, green, and blue fluorescent proteins combined in a single plasmid, dubbed RGB-S reporter, enable simultaneous, independent, and real-time analysis of the transcriptional response of Escherichia coli using three promoters which report physiological stress (PosmY for RpoS), genotoxicity (PsulA for SOS), and cytotoxicity (PgrpE for RpoH). The bioreporter is compatible with standard analysis and Fluorescent Activated Cell Sorting (FACS) combined with subsequent transcriptome analysis. Various stressors, including the biotechnologically relevant 2-propanol, activate one, two, or all three stress responses, which can significantly impact non-stress-related metabolic pathways. Implemented in microfluidic cultivation with confocal fluorescence microscopy imaging, the RGB-S reporter enabled spatiotemporal analysis of live biofilms revealing stratified subpopulations of bacteria with heterogeneous stress responses.


Subject(s)
1-Propanol , Biofilms , Color , Escherichia coli/genetics , Gene Expression Profiling
3.
Article in English | MEDLINE | ID: mdl-36288792

ABSTRACT

Natural evolution has produced an almost infinite variety of microorganisms that can colonize almost any conceivable habitat. Since the vast majority of these microbial consortia are still unknown, there is a great need to elucidate this "microbial dark matter" (MDM) to enable exploitation in biotechnology. We report the fabrication and application of a novel device that integrates a matrix of macroporous elastomeric silicone foam (MESIF) into an easily fabricated and scalable chip design that can be used for decoding MDM in environmental microbiomes. Technical validation, performed with the model organism Escherichia coli expressing a fluorescent protein, showed that this low-cost, bioinert, and widely modifiable chip is rapidly colonized by microorganisms. The biological potential of the chip was then illustrated through targeted sampling and enrichment of microbiomes in a variety of habitats ranging from wet, turbulent moving bed biofilters and wastewater treatment plants to dry air-based environments. Sequencing analyses consistently showed that MESIF chips are not only suitable for sampling with high robustness but also that the material can be used to detect a broad cross section of microorganisms present in the habitat in a short time span of a few days. For example, results from the biofilter habitat showed efficient enrichment of microorganisms belonging to the enigmatic Candidate Phyla Radiation, which comprise ∼70% of the MDM. From dry air, the MESIF chip was able to enrich a variety of members of Actinobacteriota, which is known to produce specific secondary metabolites. Targeted sampling from a wastewater treatment plant where the herbicide glyphosate was added to the chip's reservoir resulted in enrichment of Cyanobacteria and Desulfobacteria, previously associated with glyphosate degradation. These initial case studies suggest that this chip is very well suited for the systematic study of MDM and opens opportunities for the cultivation of previously unculturable microorganisms.

SELECTION OF CITATIONS
SEARCH DETAIL
...