Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
G3 (Bethesda) ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39106431

ABSTRACT

Organisms use constitutive or induced defenses against pathogens and other external threats. Constitutive defenses are constantly on, whereas induced defenses are activated when needed. Each of these strategies has costs and benefits, which can affect the type of defense that evolves in response to pathogens. In addition, induced defenses are usually regulated by multiple negative feedback mechanisms that prevent overactivation of the immune response. However, it is unclear how negative feedback affects the costs, benefits, and evolution of induced responses. To address this gap, we developed a mechanistic model of the well-characterized Drosophila melanogaster immune signaling network that includes three separate mechanisms of negative feedback as a representative of the widespread phenomenon of muti-level regulation of induced responses. We show that, under stochastic fly-bacteria encounters, an induced defense is favored when bacterial encounters are rare or uncertain, but in ways that depend on the bacterial proliferation rate. Our model also predicts that the specific negative regulators that optimize the induced response depend on the bacterial proliferation rate, linking negative feedback mechanisms to the factors that favor induction.

2.
Nat Commun ; 15(1): 5984, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013946

ABSTRACT

Houseflies provide a good experimental model to study the initial evolutionary stages of a primary sex-determining locus because they possess different recently evolved proto-Y chromosomes that contain male-determining loci (M) with the same male-determining gene, Mdmd. We investigate M-loci genomically and cytogenetically revealing distinct molecular architectures among M-loci. M on chromosome V (MV) has two intact Mdmd copies in a palindrome. M on chromosome III (MIII) has tandem duplications containing 88 Mdmd copies (only one intact) and various repeats, including repeats that are XY-prevalent. M on chromosome II (MII) and the Y (MY) share MIII-like architecture, but with fewer repeats. MY additionally shares MV-specific sequence arrangements. Based on these data and karyograms using two probes, one derives from MIII and one Mdmd-specific, we infer evolutionary histories of polymorphic M-loci, which have arisen from unique translocations of Mdmd, embedded in larger DNA fragments, and diverged independently into regions of varying complexity.


Subject(s)
Evolution, Molecular , Houseflies , Animals , Male , Houseflies/genetics , Y Chromosome/genetics , Sex Determination Processes/genetics , Chromosomes, Insect/genetics , Genetic Loci , Female
3.
Genome ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722238

ABSTRACT

Animals encounter diverse microbial communities throughout their lifetime, which exert varying selection pressures. Antimicrobial peptides (AMPs), which lyse or inhibit microbial growth, are a first line of defense against some of these microbes. Here we examine how developmental variation in microbial exposure has affected the evolution of expression and amino acid sequences of Defensins (an ancient class of AMPs) in the house fly (Musca domestica). The house fly is a well-suited model for this work because it trophically associates with varying microbial communities throughout its life history and its genome contains expanded families of AMPs, including Defensins. We identified two subsets of house fly Defensins: one expressed in larvae or pupae, and the other expressed in adults. The amino acid sequences of these two Defensin subsets form distinct monophyletic clades, and they are located in separate gene clusters in the genome. The adult-expressed Defensins evolve faster than larval/pupal Defensins, consistent with different selection pressures across developmental stages. Our results therefore suggest that varied microbial communities encountered across life history can shape the evolutionary trajectories of immune genes.

4.
Integr Comp Biol ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637295

ABSTRACT

Organisms produce antimicrobial peptides (AMPs) either in response to infection (induced) or continuously (constitutively) to combat microbes encountered during normal trophic activities and/or through pathogenic infections. The expression of AMPs is tightly regulated often with specificity to particular tissues or developmental stages. As a result, AMPs face varying selective pressures based on the microbes the organism's tissue or developmental stage encounters. Here, we analyzed the evolution and developmental-specific expression of Defensins, which are ancient AMPs in insects, in the stable fly (Stomoxys calcitrans). Stable fly larvae inhibit microbe-rich environments, whereas adult flies, as blood-feeders, experience comparatively fewer encounters with diverse microbial communities. Using existing RNA-seq datasets, we identified six Defensins that were only expressed in larvae (larval Defensins) and five that were not expressed in larvae (non-larval Defensins). Each of the non-larval Defensins was expressed in at least one adult tissue sample. Half of the larval Defensins were induced by mating or feeding in adults, and all three of the induced Defensins were located downstream of canonical binding sites for an Imd transcription factor involved in the highly conserved NF-κB signaling that regulates induction of AMPs. The larval and non-larval Defensins were located in distinct genomic regions, and the amino acid sequences of the larval Defensins formed a monophyletic clade. There were more amino acid substitutions across non-larval Defensins, with multiple genes losing a highly conserved furin cleavage site thought to be required for the removal of the amino terminus from the mature Defensin domain. However, larval Defensins had a higher proportion of radical amino acid substitutions, altering amino acid size and polarity. Our results reveal insights into the developmental stage-specific regulation of AMPs, and they suggest different regulatory regimes impose unique selection pressures on AMPs, possibly as a result of variation in exposure to microbial communities across development.

SELECTION OF CITATIONS
SEARCH DETAIL