Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 629(8011): 417-425, 2024 May.
Article in English | MEDLINE | ID: mdl-38658748

ABSTRACT

Cancer-specific TCF1+ stem-like CD8+ T cells can drive protective anticancer immunity through expansion and effector cell differentiation1-4; however, this response is dysfunctional in tumours. Current cancer immunotherapies2,5-9 can promote anticancer responses through TCF1+ stem-like CD8+ T cells in some but not all patients. This variation points towards currently ill-defined mechanisms that limit TCF1+CD8+ T cell-mediated anticancer immunity. Here we demonstrate that tumour-derived prostaglandin E2 (PGE2) restricts the proliferative expansion and effector differentiation of TCF1+CD8+ T cells within tumours, which promotes cancer immune escape. PGE2 does not affect the priming of TCF1+CD8+ T cells in draining lymph nodes. PGE2 acts through EP2 and EP4 (EP2/EP4) receptor signalling in CD8+ T cells to limit the intratumoural generation of early and late effector T cell populations that originate from TCF1+ tumour-infiltrating CD8+ T lymphocytes (TILs). Ablation of EP2/EP4 signalling in cancer-specific CD8+ T cells rescues their expansion and effector differentiation within tumours and leads to tumour elimination in multiple mouse cancer models. Mechanistically, suppression of the interleukin-2 (IL-2) signalling pathway underlies the PGE2-mediated inhibition of TCF1+ TIL responses. Altogether, we uncover a key mechanism that restricts the IL-2 responsiveness of TCF1+ TILs and prevents anticancer T cell responses that originate from these cells. This study identifies the PGE2-EP2/EP4 axis as a molecular target to restore IL-2 responsiveness in anticancer TILs to achieve cancer immune control.


Subject(s)
CD8-Positive T-Lymphocytes , Cell Proliferation , Dinoprostone , Lymphocytes, Tumor-Infiltrating , Neoplasms , Stem Cells , Tumor Escape , Animals , Female , Humans , Male , Mice , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation , Cell Line, Tumor , Dinoprostone/metabolism , Disease Models, Animal , Hepatocyte Nuclear Factor 1-alpha/metabolism , Interleukin-2 , Lymph Nodes/cytology , Lymph Nodes/immunology , Lymphocytes, Tumor-Infiltrating/cytology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Mice, Inbred C57BL , Neoplasms/immunology , Neoplasms/prevention & control , Receptors, Prostaglandin E, EP2 Subtype/deficiency , Receptors, Prostaglandin E, EP2 Subtype/metabolism , Receptors, Prostaglandin E, EP4 Subtype/deficiency , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Signal Transduction , Stem Cells/cytology , Stem Cells/immunology , Stem Cells/metabolism , Tumor Escape/immunology
2.
Cancer Cell ; 41(8): 1498-1515.e10, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37451271

ABSTRACT

Type 1 conventional dendritic cells (cDC1) can support T cell responses within tumors but whether this determines protective versus ineffective anti-cancer immunity is poorly understood. Here, we use imaging-based deep learning to identify intratumoral cDC1-CD8+ T cell clustering as a unique feature of protective anti-cancer immunity. These clusters form selectively in stromal tumor regions and constitute niches in which cDC1 activate TCF1+ stem-like CD8+ T cells. We identify a distinct population of immunostimulatory CCR7neg cDC1 that produce CXCL9 to promote cluster formation and cross-present tumor antigens within these niches, which is required for intratumoral CD8+ T cell differentiation and expansion and promotes cancer immune control. Similarly, in human cancers, CCR7neg cDC1 interact with CD8+ T cells in clusters and are associated with patient survival. Our findings reveal an intratumoral phase of the anti-cancer T cell response orchestrated by tumor-residing cDC1 that determines protective versus ineffective immunity and could be exploited for cancer therapy.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Humans , Receptors, CCR7/metabolism , Neoplasms/therapy , Antigens, Neoplasm , Dendritic Cells
3.
Immunity ; 56(6): 1341-1358.e11, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37315536

ABSTRACT

Type 1 conventional dendritic cells (cDC1s) are critical for anti-cancer immunity. Protective anti-cancer immunity is thought to require cDC1s to sustain T cell responses within tumors, but it is poorly understood how this function is regulated and whether its subversion contributes to immune evasion. Here, we show that tumor-derived prostaglandin E2 (PGE2) programmed a dysfunctional state in intratumoral cDC1s, disabling their ability to locally orchestrate anti-cancer CD8+ T cell responses. Mechanistically, cAMP signaling downstream of the PGE2-receptors EP2 and EP4 was responsible for the programming of cDC1 dysfunction, which depended on the loss of the transcription factor IRF8. Blockade of the PGE2-EP2/EP4-cDC1 axis prevented cDC1 dysfunction in tumors, locally reinvigorated anti-cancer CD8+ T cell responses, and achieved cancer immune control. In human cDC1s, PGE2-induced dysfunction is conserved and associated with poor cancer patient prognosis. Our findings reveal a cDC1-dependent intratumoral checkpoint for anti-cancer immunity that is targeted by PGE2 for immune evasion.


Subject(s)
Dinoprostone , Neoplasms , Humans , Antibodies , CD8-Positive T-Lymphocytes , Dendritic Cells , Receptors, Prostaglandin E
4.
Eur J Immunol ; 53(11): e2249923, 2023 11.
Article in English | MEDLINE | ID: mdl-36623939

ABSTRACT

This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs and various non-lymphoid tissues. Here, we provide detailed procedures for a variety of multiparameter fluorescence microscopy imaging methods to explore the spatial organization of DC in tissues and to dissect how DC migrate, communicate, and mediate their multiple functional roles in immunity in a variety of tissue settings. The protocols presented here entail approaches to study DC dynamics and T cell cross-talk by intravital microscopy, large-scale visualization, identification, and quantitative analysis of DC subsets and their functions by multiparameter fluorescence microscopy of fixed tissue sections, and an approach to study DC interactions with tissue cells in a 3D cell culture model. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer-reviewed by leading experts and approved by all co-authors, making it an essential resource for basic and clinical DC immunologists.


Subject(s)
Dendritic Cells , T-Lymphocytes , Humans , Microscopy, Fluorescence/methods
5.
Immunity ; 54(10): 2288-2304.e7, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34437840

ABSTRACT

Upon viral infection, natural killer (NK) cells expressing certain germline-encoded receptors are selected, expanded, and maintained in an adaptive-like manner. Currently, these are thought to differentiate along a common pathway. However, by fate mapping of single NK cells upon murine cytomegalovirus (MCMV) infection, we identified two distinct NK cell lineages that contributed to adaptive-like responses. One was equivalent to conventional NK (cNK) cells while the other was transcriptionally similar to type 1 innate lymphoid cells (ILC1s). ILC1-like NK cells showed splenic residency and strong cytokine production but also recognized and killed MCMV-infected cells, guided by activating receptor Ly49H. Moreover, they induced clustering of conventional type 1 dendritic cells and facilitated antigen-specific T cell priming early during MCMV infection, which depended on Ly49H and the NK cell-intrinsic expression of transcription factor Batf3. Thereby, ILC1-like NK cells bridge innate and adaptive viral recognition and unite critical features of cNK cells and ILC1s.


Subject(s)
Adaptive Immunity/immunology , Cell Lineage/immunology , Herpesviridae Infections/immunology , Immunity, Innate/immunology , Killer Cells, Natural/immunology , Animals , Female , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Muromegalovirus
7.
Nature ; 592(7854): 444-449, 2021 04.
Article in English | MEDLINE | ID: mdl-33762736

ABSTRACT

Nonalcoholic steatohepatitis (NASH) is a manifestation of systemic metabolic disease related to obesity, and causes liver disease and cancer1,2. The accumulation of metabolites leads to cell stress and inflammation in the liver3, but mechanistic understandings of liver damage in NASH are incomplete. Here, using a preclinical mouse model that displays key features of human NASH (hereafter, NASH mice), we found an indispensable role for T cells in liver immunopathology. We detected the hepatic accumulation of CD8 T cells with phenotypes that combined tissue residency (CXCR6) with effector (granzyme) and exhaustion (PD1) characteristics. Liver CXCR6+ CD8 T cells were characterized by low activity of the FOXO1 transcription factor, and were abundant in NASH mice and in patients with NASH. Mechanistically, IL-15 induced FOXO1 downregulation and CXCR6 upregulation, which together rendered liver-resident CXCR6+ CD8 T cells susceptible to metabolic stimuli (including acetate and extracellular ATP) and collectively triggered auto-aggression. CXCR6+ CD8 T cells from the livers of NASH mice or of patients with NASH had similar transcriptional signatures, and showed auto-aggressive killing of cells in an MHC-class-I-independent fashion after signalling through P2X7 purinergic receptors. This killing by auto-aggressive CD8 T cells fundamentally differed from that by antigen-specific cells, which mechanistically distinguishes auto-aggressive and protective T cell immunity.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Liver/immunology , Liver/pathology , Non-alcoholic Fatty Liver Disease/immunology , Non-alcoholic Fatty Liver Disease/pathology , Receptors, CXCR6/immunology , Acetates/pharmacology , Animals , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/pathology , Cell Death/drug effects , Cell Death/immunology , Diet, High-Fat/adverse effects , Disease Models, Animal , Humans , Interleukin-15/immunology , Interleukin-15/pharmacology , Liver/drug effects , Male , Mice , Mice, Inbred C57BL
8.
Cells ; 9(10)2020 10 08.
Article in English | MEDLINE | ID: mdl-33050035

ABSTRACT

A high fat Western-style diet leads to hepatic steatosis that can progress to steatohepatitis and ultimately cirrhosis or liver cancer. The mechanism that leads to the development of steatosis upon nutritional overload is complex and only partially understood. Using click chemistry-based metabolic tracing and microscopy, we study the interaction between Kupffer cells and hepatocytes ex vivo. In the early phase of steatosis, hepatocytes alone do not display significant deviations in fatty acid metabolism. However, in co-cultures or supernatant transfer experiments, we show that tumor necrosis factor (TNF) secretion by Kupffer cells is necessary and sufficient to induce steatosis in hepatocytes, independent of the challenge of hepatocytes with elevated fatty acid levels. We further show that free fatty acid (FFA) or lipopolysaccharide are both able to trigger release of TNF from Kupffer cells. We conclude that Kupffer cells act as the primary sensor for both FFA overload and bacterial lipopolysaccharide, integrate these signals and transmit the information to the hepatocyte via TNF secretion. Hepatocytes react by alteration in lipid metabolism prominently leading to the accumulation of triacylglycerols (TAGs) in lipid droplets, a hallmark of steatosis.


Subject(s)
Fatty Acids, Nonesterified/metabolism , Hepatocytes/metabolism , Kupffer Cells/metabolism , Animals , Click Chemistry/methods , Diet, High-Fat/adverse effects , Disease Models, Animal , Fatty Acids, Nonesterified/physiology , Fatty Liver/etiology , Fatty Liver/metabolism , Hepatocytes/physiology , Inflammation/metabolism , Kupffer Cells/physiology , Lipid Metabolism/physiology , Lipids/physiology , Liver/metabolism , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Tumor Necrosis Factor-alpha
9.
Immunity ; 52(2): 313-327.e7, 2020 02 18.
Article in English | MEDLINE | ID: mdl-32049052

ABSTRACT

T cell responses upon infection display a remarkably reproducible pattern of expansion, contraction, and memory formation. If the robustness of this pattern builds entirely on signals derived from other cell types or if activated T cells themselves contribute to the orchestration of these population dynamics-akin to bacterial quorum regulation-is unclear. Here, we examined this question using time-lapse microscopy, genetic perturbation, bioinformatic predictions, and mathematical modeling. We found that ICAM-1-mediated cell clustering enabled CD8+ T cells to collectively regulate the balance between proliferation and apoptosis. Mechanistically, T cell expressed CD80 and CD86 interacted with the receptors CD28 and CTLA-4 on neighboring T cells; these interactions fed two nested antagonistic feedback circuits that regulated interleukin 2 production in a manner dependent on T cell density as confirmed by in vivo modulation of this network. Thus, CD8+ T cell-population-intrinsic mechanisms regulate cellular behavior, thereby promoting robustness of population dynamics.


Subject(s)
CD28 Antigens/metabolism , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , CTLA-4 Antigen/metabolism , Animals , B7-1 Antigen/metabolism , B7-2 Antigen/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cell Communication , Cell Count , Cell Line , Cell Survival , Cell Tracking , Dendritic Cells/immunology , Intercellular Adhesion Molecule-1/metabolism , Interleukin-2/metabolism , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Transgenic , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...