Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Front Immunol ; 14: 1228894, 2023.
Article in English | MEDLINE | ID: mdl-37662907

ABSTRACT

Introduction: Metastatic rhabdomyosarcoma (RMS) is a challenging tumor entity that evades conventional treatments and endogenous antitumor immune responses, highlighting the need for novel therapeutic strategies. Applying chimeric antigen receptor (CAR) technology to natural killer (NK) cells may offer safe, effective, and affordable therapies that enhance cancer immune surveillance. Methods: Here, we assess the efficacy of clinically usable CAR-engineered NK cell line NK-92/5.28.z against ErbB2-positive RMS in vitro and in a metastatic xenograft mouse model. Results: Our results show that NK-92/5.28.z cells effectively kill RMS cells in vitro and significantly prolong survival and inhibit tumor progression in mice. The persistence of NK-92/5.28.z cells at tumor sites demonstrates efficient antitumor response, which could help overcome current obstacles in the treatment of solid tumors. Discussion: These findings encourage further development of NK-92/5.28.z cells as off-the-shelf immunotherapy for the treatment of metastatic RMS.


Subject(s)
Neoplasms, Second Primary , Receptors, Chimeric Antigen , Rhabdomyosarcoma, Alveolar , Rhabdomyosarcoma , Humans , Animals , Mice , Rhabdomyosarcoma, Alveolar/therapy , Receptors, Chimeric Antigen/genetics , Immunotherapy , Rhabdomyosarcoma/therapy , Disease Models, Animal , Killer Cells, Natural
2.
Nat Commun ; 14(1): 3074, 2023 05 27.
Article in English | MEDLINE | ID: mdl-37244912

ABSTRACT

Paediatric rhabdomyosarcoma (RMS) is a soft tissue malignancy of mesenchymal origin that is thought to arise as a consequence of derailed myogenic differentiation. Despite intensive treatment regimens, the prognosis for high-risk patients remains dismal. The cellular differentiation states underlying RMS and how these relate to patient outcomes remain largely elusive. Here, we use single-cell mRNA sequencing to generate a transcriptomic atlas of RMS. Analysis of the RMS tumour niche reveals evidence of an immunosuppressive microenvironment. We also identify a putative interaction between NECTIN3 and TIGIT, specific to the more aggressive fusion-positive (FP) RMS subtype, as a potential cause of tumour-induced T-cell dysfunction. In malignant RMS cells, we define transcriptional programs reflective of normal myogenic differentiation and show that these cellular differentiation states are predictive of patient outcomes in both FP RMS and the less aggressive fusion-negative subtype. Our study reveals the potential of therapies targeting the immune microenvironment of RMS and suggests that assessing tumour differentiation states may enable a more refined risk stratification.


Subject(s)
Rhabdomyosarcoma, Embryonal , Rhabdomyosarcoma , Child , Humans , Transcriptome , Cell Proliferation/genetics , Rhabdomyosarcoma/genetics , Rhabdomyosarcoma/pathology , Gene Expression Profiling , Cell Line, Tumor , Tumor Microenvironment/genetics
4.
Pediatr Radiol ; 53(4): 788-812, 2023 04.
Article in English | MEDLINE | ID: mdl-36843091

ABSTRACT

Rhabdomyosarcoma, although rare, is the most frequent soft tissue sarcoma in children and adolescents. It can present as a mass at nearly any site in the body, with most common presentations in the head and neck, genitourinary tract and extremities. The optimal diagnostic approach and management of rhabdomyosarcoma require a multidisciplinary team with multimodal treatment, including chemotherapy and local therapy. Survival has improved over the last decades; however, further improvement in management is essential with current 5-year overall survival ranging from 35% to 100%, depending on disease and patient characteristics. In the full patient journey, from diagnosis, staging, management to follow-up after therapy, the paediatric radiologist and nuclear physician are essential members of the multidisciplinary team. Recently, guidelines of the European paediatric Soft tissue sarcoma Study Group, the Cooperative Weichteilsarkom Studiengruppe and the Oncology Task Force of the European Society of Paediatric Radiology (ESPR), in an ongoing collaboration with the International Soft-Tissue Sarcoma Database Consortium, provided guidance for high-quality imaging. In this educational paper, given as a lecture during the 2022 postgraduate ESPR course, the multi-disciplinary team of our national paediatric oncology centre presents the journey of two patients with rhabdomyosarcoma and discusses the impact on and considerations for the clinical (paediatric) radiologist and nuclear physician. The key learning points of the guidelines and their implementation in clinical practice are highlighted and up-to-date insights provided for all aspects from clinical suspicion of rhabdomyosarcoma and its differential diagnosis, to biopsy, staging, risk stratification, treatment response assessment and follow-up.


Subject(s)
Rhabdomyosarcoma , Sarcoma , Soft Tissue Neoplasms , Adolescent , Child , Humans , Rhabdomyosarcoma/diagnostic imaging , Rhabdomyosarcoma/therapy , Sarcoma/diagnostic imaging , Sarcoma/therapy , Diagnostic Imaging , Combined Modality Therapy , Soft Tissue Neoplasms/diagnostic imaging , Soft Tissue Neoplasms/therapy , Soft Tissue Neoplasms/pathology
5.
Eur J Cancer ; 175: 311-325, 2022 11.
Article in English | MEDLINE | ID: mdl-36182817

ABSTRACT

iTHER is a Dutch prospective national precision oncology program aiming to define tumour molecular profiles in children and adolescents with primary very high-risk, relapsed, or refractory paediatric tumours. Between April 2017 and April 2021, 302 samples from 253 patients were included. Comprehensive molecular profiling including low-coverage whole genome sequencing (lcWGS), whole exome sequencing (WES), RNA sequencing (RNA-seq), Affymetrix, and/or 850k methylation profiling was successfully performed for 226 samples with at least 20% tumour content. Germline pathogenic variants were identified in 16% of patients (35/219), of which 22 variants were judged causative for a cancer predisposition syndrome. At least one somatic alteration was detected in 204 (90.3%), and 185 (81.9%) were considered druggable, with clinical priority very high (6.1%), high (21.3%), moderate (26.0%), intermediate (36.1%), and borderline (10.5%) priority. iTHER led to revision or refinement of diagnosis in 8 patients (3.5%). Temporal heterogeneity was observed in paired samples of 15 patients, indicating the value of sequential analyses. Of 137 patients with follow-up beyond twelve months, 21 molecularly matched treatments were applied in 19 patients (13.9%), with clinical benefit in few. Most relevant barriers to not applying targeted therapies included poor performance status, as well as limited access to drugs within clinical trial. iTHER demonstrates the feasibility of comprehensive molecular profiling across all ages, tumour types and stages in paediatric cancers, informing of diagnostic, prognostic, and targetable alterations as well as reportable germline variants. Therefore, WES and RNA-seq is nowadays standard clinical care at the Princess Máxima Center for all children with cancer, including patients at primary diagnosis. Improved access to innovative treatments within biology-driven combination trials is required to ultimately improve survival.


Subject(s)
Neoplasms , Adolescent , Child , High-Throughput Nucleotide Sequencing , Humans , Medical Oncology , Mutation , Neoplasms/drug therapy , Neoplasms/genetics , Precision Medicine , Prospective Studies , Exome Sequencing
6.
EMBO Mol Med ; 14(10): e16001, 2022 10 10.
Article in English | MEDLINE | ID: mdl-35916583

ABSTRACT

Rhabdomyosarcomas (RMS) are mesenchyme-derived tumors and the most common childhood soft tissue sarcomas. Treatment is intense, with a nevertheless poor prognosis for high-risk patients. Discovery of new therapies would benefit from additional preclinical models. Here, we describe the generation of a collection of 19 pediatric RMS tumor organoid (tumoroid) models (success rate of 41%) comprising all major subtypes. For aggressive tumors, tumoroid models can often be established within 4-8 weeks, indicating the feasibility of personalized drug screening. Molecular, genetic, and histological characterization show that the models closely resemble the original tumors, with genetic stability over extended culture periods of up to 6 months. Importantly, drug screening reflects established sensitivities and the models can be modified by CRISPR/Cas9 with TP53 knockout in an embryonal RMS model resulting in replicative stress drug sensitivity. Tumors of mesenchymal origin can therefore be used to generate organoid models, relevant for a variety of preclinical and clinical research questions.


Subject(s)
Organoids , Rhabdomyosarcoma , Child , Humans , Organoids/pathology , Rhabdomyosarcoma/diagnosis , Rhabdomyosarcoma/pathology
7.
Neoplasia ; 24(2): 109-119, 2022 02.
Article in English | MEDLINE | ID: mdl-34959030

ABSTRACT

BH3 mimetics are promising novel anticancer therapeutics. By selectively inhibiting BCL-2, BCL-xL, or MCL-1 (i.e. ABT-199, A-1331852, S63845) they shift the balance of pro- and anti-apoptotic proteins in favor of apoptosis. As Bromodomain and Extra Terminal (BET) protein inhibitors promote pro-apoptotic rebalancing, we evaluated the potential of the BET inhibitor JQ1 in combination with ABT-199, A-1331852 or S63845 in rhabdomyosarcoma (RMS) cells. The strongest synergistic interaction was identified for JQ1/A-1331852 and JQ1/S63845 co-treatment, which reduced cell viability and long-term clonogenic survival. Mechanistic studies revealed that JQ1 upregulated BIM and NOXA accompanied by downregulation of BCL-xL, promoting pro-apoptotic rebalancing of BCL-2 proteins. JQ1/A-1331852 and JQ1/S63845 co-treatment enhanced this pro-apoptotic rebalancing and triggered BAK- and BAX-dependent apoptosis since a) genetic silencing of BIM, BAK or BAX, b) inhibition of caspase activity with zVAD.fmk and c) overexpression of BCL-2 all rescued JQ1/A-1331852- and JQ1/S63845-induced cell death. Interestingly, NOXA played a different role in both treatments, as genetic silencing of NOXA significantly rescued from JQ1/A-1331852-mediated apoptosis but not from JQ1/S63845-mediated apoptosis. In summary, JQ1/A-1331852 and JQ1/S63845 co-treatment represent new promising therapeutic strategies to synergistically trigger mitochondrial apoptosis in RMS.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Nerve Tissue Proteins/antagonists & inhibitors , Peptide Fragments/pharmacology , Proto-Oncogene Proteins/pharmacology , Receptors, Cell Surface/antagonists & inhibitors , Biomimetics , Cell Line, Tumor , Drug Synergism , Humans , Rhabdomyosarcoma
8.
Cancer Discov ; 11(11): 2764-2779, 2021 11.
Article in English | MEDLINE | ID: mdl-34373263

ABSTRACT

INFORM is a prospective, multinational registry gathering clinical and molecular data of relapsed, progressive, or high-risk pediatric patients with cancer. This report describes long-term follow-up of 519 patients in whom molecular alterations were evaluated according to a predefined seven-scale target prioritization algorithm. Mean turnaround time from sample receipt to report was 25.4 days. The highest target priority level was observed in 42 patients (8.1%). Of these, 20 patients received matched targeted treatment with a median progression-free survival of 204 days [95% confidence interval (CI), 99-not applicable], compared with 117 days (95% CI, 106-143; P = 0.011) in all other patients. The respective molecular targets were shown to be predictive for matched treatment response and not prognostic surrogates for improved outcome. Hereditary cancer predisposition syndromes were identified in 7.5% of patients, half of which were newly identified through the study. Integrated molecular analyses resulted in a change or refinement of diagnoses in 8.2% of cases. SIGNIFICANCE: The pediatric precision oncology INFORM registry prospectively tested a target prioritization algorithm in a real-world, multinational setting and identified subgroups of patients benefiting from matched targeted treatment with improved progression-free survival, refinement of diagnosis, and identification of hereditary cancer predisposition syndromes.See related commentary by Eggermont et al., p. 2677.This article is highlighted in the In This Issue feature, p. 2659.


Subject(s)
Neoplasms , Child , Humans , Neoplasms/diagnosis , Neoplasms/drug therapy , Neoplasms/genetics , Precision Medicine , Progression-Free Survival , Prospective Studies , Registries
9.
J Surg Oncol ; 122(7): 1337-1347, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32812260

ABSTRACT

BACKGROUND AND OBJECTIVES: Malignant peripheral nerve sheath tumors (MPNST) are aggressive soft tissue sarcomas that present as large, invasive tumors. Our aim was to assess outcomes, identify prognostic factors, and analyze treatment strategies in a prospectively collected pediatric cohort. METHODS: Patients less than 21 years with MPNST treated in the consecutive prospective European Cooperative Weichteilsarkom Studiengruppe (CWS)-trials (1981-2009) and the CWS-SoTiSaR registry (2009-2015) were analyzed. RESULTS: A total of 159 patients were analyzed. Neurofibromatosis type I (NF1) was reported in thirty-eight patients (24%). Most were adolescents (67%) with large (>10 cm, 65%) tumors located at extremities (42%). Nodal involvement was documented in 15 (9%) and distant metastases in 15 (9%) upon diagnosis. Overall, event-free survival (EFS) was 40.5% at 5 and 36.3% at 10 years, and overall survival (OS) was 54.6% at 5 and 47.1% at 10 years. Age, NF1 status, tumor site, tumor size, Intergroup Rhabdomyosarcoma Study (IRS) group, metastatic disease, and achieving first complete remission (CR1) were identified as prognostic factors for EFS and/or OS in the univariate analysis. CONCLUSIONS: Prognostic factors were identified and research questions for future clinical trials were addressed.


Subject(s)
Nerve Sheath Neoplasms/therapy , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Neoplasm Metastasis , Nerve Sheath Neoplasms/mortality , Nerve Sheath Neoplasms/pathology , Neurofibromatosis 1/therapy , Prognosis , Prospective Studies , Registries , Young Adult
10.
Oncogene ; 39(19): 3837-3852, 2020 05.
Article in English | MEDLINE | ID: mdl-32161312

ABSTRACT

Remodeling transcription by targeting bromodomain and extraterminal (BET) proteins has emerged as promising anticancer strategy. Here, we identify a novel synergistic interaction of the BET inhibitor JQ1 with the PI3Kα-specific inhibitor BYL719 to trigger mitochondrial apoptosis and to suppress tumor growth in models of rhabdomyosarcoma (RMS). RNA-Seq revealed that JQ1/BYL719 co-treatment shifts the overall balance of BCL-2 family gene expression towards apoptosis and upregulates expression of BMF, BCL2L11 (BIM), and PMAIP1 (NOXA) while downregulating BCL2L1 (BCL-xL). These changes were confirmed by qRT-PCR and western blot analysis. Ingenuity pathway analysis (IPA) of RNA-Seq data followed by validation qRT-PCR and western blot identified MYC and FOXO3a as potential transcription factors (TFs) upstream of the observed gene expression pattern. Immunoprecipitation (IP) studies showed that JQ1/BYL719-stimulated increase in BIM expression enhances the neutralization of antiapoptotic BCL-2, BCL-xL, and MCL-1. This promotes the activation of BAK and BAX and caspase-dependent apoptosis, as (1) individual silencing of BMF, BIM, NOXA, BAK, or BAX, (2) overexpression of BCL-2 or MCL-1 or (3) the caspase inhibitor N-Benzyloxycarbonyl-Val-Ala-Asp(O-Me) fluoromethylketone (zVAD.fmk) all rescue JQ1/BYL719-induced cell death. In conclusion, co-inhibition of BET proteins and PI3Kα cooperatively induces mitochondrial apoptosis by proapoptotic re-balancing of BCL-2 family proteins. This discovery opens exciting perspectives for therapeutic exploitation of BET inhibitors in RMS.


Subject(s)
Mitochondria/drug effects , Proto-Oncogene Proteins c-bcl-2/genetics , Rhabdomyosarcoma/drug therapy , Transcription Factors/genetics , Adaptor Proteins, Signal Transducing/genetics , Animals , Apoptosis/drug effects , Azepines/pharmacology , Bcl-2-Like Protein 11/genetics , Drug Synergism , Gene Expression Regulation, Neoplastic/genetics , Histone Deacetylase Inhibitors/pharmacology , Humans , Mice , Myeloid Cell Leukemia Sequence 1 Protein/genetics , RNA-Seq , Rhabdomyosarcoma/genetics , Rhabdomyosarcoma/pathology , Thiazoles/pharmacology , Transcription Factors/antagonists & inhibitors , Triazoles/pharmacology , bcl-X Protein/genetics
12.
Pediatr Blood Cancer ; 62(11): 2018-20, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26109475
SELECTION OF CITATIONS
SEARCH DETAIL
...