Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccine ; 2024 May 04.
Article in English | MEDLINE | ID: mdl-38705805

ABSTRACT

Hand, foot, and mouth disease (HFMD) poses a significant public health threat primarily caused by four major enteroviruses: enterovirus 71 (EV71), coxsackieviruses A16, A10, and A6. Broadly protective immune responses are essential for complete protection against these major enteroviruses. In this study, we designed a new tetravalent immunogen for HFMD, validated it in silico, in vivo evaluated the immunogenicity of the DNA-based tetravalent vaccine in mice, and identified immunogenic B-cell and T-cell epitopes. A new tetravalent immunogen, VP1me, was designed based on the chimeric protein and epitope-based vaccine principles. It contains a complete EV71 VP1 protein and six reported neutralizing B-cell epitopes derived from the four major enteroviruses causing HFMD. In silico validation using multiple immunoinformatic tools indicated good attributes of the VP1me immunogen suitable for vaccine development. The VP1me-based DNA vaccine efficiently induced both humoral and cellular immune responses in BALB/cAJcl mice. A combination of in silico prediction and immunoassays enabled the identification of immunogenic linear B-cell and CD8 T-cell epitopes within the VP1me immunogen. Immunodominant linear B-cell epitopes were identified in six regions of VP1me, with one epitope located at the N-terminus of the VP1 protein (aa 9-23) regarded as a novel epitope. Interestingly, some B-cell epitopes could also induce the CD8 T-cell response, suggesting their dual functions in immune stimulation. These results lay the groundwork for further development of VP1me as a new vaccine candidate.

2.
Vaccines (Basel) ; 12(3)2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38543958

ABSTRACT

Porcine circovirus type 2 (PCV2) is the main causative agent of porcine circovirus-associated disease (PCVAD) that profoundly impacts the swine industry worldwide. While most of the commercial PCV vaccines are developed based on PCV genotype 2a (PCV2a), PCV genotype 2b (PCV2b) has become predominant since 2003. In this study, we developed and evaluated DNA-based bivalent vaccines covering both PCV2a and PCV2b. We generated a new immunogen, PCV2b-2a, by combining consensus sequences of the PCV2a and PCV2b capsid proteins (Cap2a and Cap2b) in a form of fusion protein. We also examined whether modifications of the PCV2b-2a fusion protein with a signal sequence (SS) and granulocyte macrophage-colony stimulating factor (GM-CSF) fusing with interleukine-4 (IL-4) (GI) could further improve the vaccine immunogenicity. An immunogenicity study of BALB/cAJcl mice revealed that the DNA vector pVAX1 co-expressing PCV2b-2a and GI (pVAX1.PCV2b-2a-GI) was most potent at inducing both antibody and cellular immune responses against Cap2a and Cap2b. Interestingly, the vaccines skewed the immune response towards Th1 phenotype (IgG2a > IgG1). By performing ELISA and ELISpot with predicted epitope peptides, the three most immunogenic B cell epitopes and five putative T cell epitopes were identified on Cap2a and Cap2b. Importantly, our DNA vaccines elicited broad immune responses recognizing both genotype-specific and PCV2-conserved epitopes. Sera from mice immunized with the DNAs expressing PCV2b-2a and PCV2b-2a-GI significantly inhibited PCV2a cell entry at serum dilution 1:8. All these results suggest a great potential of our PCV2b-2a-based vaccines, which can be further developed for use in other vaccine platforms to achieve both vaccine efficacy and economical production cost.

3.
Mol Biotechnol ; 64(12): 1409-1418, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35704162

ABSTRACT

Neuraminidase (NA) is a second major surface protein of the influenza virus and has recently been suggested as a supplemental antigen to the major immunodominant hemagglutinin (HA) antigen in the influenza vaccine. NA is less affected by antigenic drift compared to the HA, induces strong anti-neuraminidase immune responses, and provides broader protection against many influenza strains. However, the NA amount in currently licensed influenza virus vaccines is much lower than that of HA, and not standardized. A platform to produce NA antigen, in the form of virus-like particles (VLPs), was thus developed, to facilitate supplementation of NA antigen in the influenza vaccine formula. Stably transformed Sf9 insect cells had been engineered to express the influenza A virus (H5N1) NA gene under a baculovirus OpMNPV IE2 promoter. Recombinant NA protein was synthesized and assembled into VLPs, in the intact cellular environment provided by insect cells. Approximately 150 µg/ml of NA-VLPs was obtained in the culture medium. Purification of the NA-VLPs was achieved by a sucrose density gradient ultracentrifugation. The purified NA-VLPs effectively induced anti-NA antibodies with neuraminidase inhibition activities in mice. This work demonstrates a simple process to produce an immunocompetent NA-VLPs antigen, exclusively made of only neuraminidase, by insect cells.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Animals , Antibodies, Viral , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinins , Humans , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/metabolism , Influenza Vaccines/genetics , Influenza, Human/prevention & control , Insecta , Membrane Proteins , Mice , Mice, Inbred BALB C , Neuraminidase/genetics , Neuraminidase/metabolism , Vaccine Development
4.
Sci Rep ; 11(1): 20383, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34650130

ABSTRACT

SARS-CoV-2 continues to infect an ever-expanding number of people, resulting in an increase in the number of deaths globally. With the emergence of new variants, there is a corresponding decrease in the currently available vaccine efficacy, highlighting the need for greater insights into the viral epitope profile for both vaccine design and assessment. In this study, three immunodominant linear B cell epitopes in the SARS-CoV-2 spike receptor-binding domain (RBD) were identified by immunoinformatics prediction, and confirmed by ELISA with sera from Macaca fascicularis vaccinated with a SARS-CoV-2 RBD subunit vaccine. Further immunoinformatics analyses of these three epitopes gave rise to a method of linear B cell epitope prediction and selection. B cell epitopes in the spike (S), membrane (M), and envelope (E) proteins were subsequently predicted and confirmed using convalescent sera from COVID-19 infected patients. Immunodominant epitopes were identified in three regions of the S2 domain, one region at the S1/S2 cleavage site and one region at the C-terminus of the M protein. Epitope mapping revealed that most of the amino acid changes found in variants of concern are located within B cell epitopes in the NTD, RBD, and S1/S2 cleavage site. This work provides insights into B cell epitopes of SARS-CoV-2 as well as immunoinformatics methods for B cell epitope prediction, which will improve and enhance SARS-CoV-2 vaccine development against emergent variants.


Subject(s)
COVID-19/immunology , Epitopes, B-Lymphocyte/immunology , Immunodominant Epitopes/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Viral Matrix Proteins/immunology , Animals , COVID-19/prevention & control , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/immunology , Computational Biology , Coronavirus Envelope Proteins/chemistry , Coronavirus Envelope Proteins/immunology , Epitopes, B-Lymphocyte/chemistry , Humans , Immunoassay , Immunodominant Epitopes/chemistry , Macaca , Models, Molecular , Spike Glycoprotein, Coronavirus/chemistry , Viral Matrix Proteins/chemistry
5.
Front Immunol ; 12: 785293, 2021.
Article in English | MEDLINE | ID: mdl-35126354

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is the causative agent of PED, an enteric disease that causes high mortality rates in piglets. PEDV is an alphacoronavirus that has high genetic diversity. Insights into neutralizing B-cell epitopes of all genetically diverse PEDV strains are of importance, particularly for designing a vaccine that can provide broad protection against PEDV. In this work, we aimed to explore the landscape of linear B-cell epitopes on the spike (S) and membrane (M) proteins of global PEDV strains. All amino acid sequences of the PEDV S and M proteins were retrieved from the NCBI database and grouped. Immunoinformatics-based methods were next developed and used to identify putative linear B-cell epitopes from 14 and 5 consensus sequences generated from distinct groups of the S and M proteins, respectively. ELISA testing predicted peptides with PEDV-positive sera revealed nine novel immunodominant epitopes on the S protein. Importantly, seven of these novel immunodominant epitopes and other subdominant epitopes were demonstrated to be neutralizing epitopes by neutralization-inhibition assay. Our findings unveil important roles of the PEDV S2 subunit in both immune stimulation and virus neutralization. Additionally, our study shows the first time that the M protein is also the target of PEDV neutralization with seven neutralizing epitopes identified. Conservancy profiles of the epitopes are also provided. In this study, we offer immunoinformatics-based methods for linear B-cell epitope identification and a more complete profile of linear B-cell epitopes across the PEDV S and M proteins, which may contribute to the development of a greater next-generation PEDV vaccine as well as peptide-based immunoassays.


Subject(s)
Coronavirus M Proteins/immunology , Epitopes, B-Lymphocyte/immunology , Immunodominant Epitopes/immunology , Porcine epidemic diarrhea virus/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Coronavirus Infections/immunology , Swine
6.
Protein Expr Purif ; 177: 105763, 2021 01.
Article in English | MEDLINE | ID: mdl-32971295

ABSTRACT

Porcine Reproductive and Respiratory Syndrome caused by Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) remains one of the important diseases in swine industry. A vaccine that is safe, effective and also elicit broad immune response against multiple antigens is desirable. In this study, we developed multi-cistronic DNA vaccines capable of co-expressing multiple structural proteins derived from PRRSV. To preserve the structure and function of each antigen protein, we employed self-cleaving 2A peptides to mediate separation of multiple proteins expressed by multi-cistronic genes. Six bi-cistronic genes encoding PRRSV GP5 and M proteins were generated, by which each construct contains different 2A sequences derived from Foot-and-mouth disease virus (F2A), porcine teschovirus-1 (P2A) and Thosea asigna virus (T2A) either with or without furin cleavage site (Fu). Vectored by the mammalian expression plasmid pTH, all six bi-cistronic genes co-expressed the proteins GP5 and M at comparable level. Importantly, all six types of 2A sequences could mediate a complete self-cleavage of the GP5 and M. We next generated tri-cistronic DNA vaccines co-expressing the PRRSV proteins GP5, M and N. All homologous and heterologous combinations of P2A and F2A in tri-cistronic genes yielded a complete self-cleavage of the GP5, M and N proteins. Our study reports a success in co-expression of multiple PRRSV structural proteins in discrete form from a single vaccine and confirms feasibility of developing one single vaccine that provides broad immune responses against PRRSV.


Subject(s)
Cloning, Molecular/methods , Porcine Reproductive and Respiratory Syndrome/prevention & control , Porcine respiratory and reproductive syndrome virus/genetics , Vaccines, DNA/biosynthesis , Viral Structural Proteins/genetics , Viral Vaccines/biosynthesis , Animals , Escherichia coli/genetics , Escherichia coli/metabolism , Furin/metabolism , Gene Expression , Genes, Viral , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Hydrolysis , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine Reproductive and Respiratory Syndrome/virology , Porcine respiratory and reproductive syndrome virus/immunology , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Swine , Vaccines, DNA/genetics , Vaccines, DNA/immunology , Viral Structural Proteins/immunology , Viral Vaccines/genetics , Viral Vaccines/immunology
7.
AMB Express ; 8(1): 170, 2018 Oct 16.
Article in English | MEDLINE | ID: mdl-30328017

ABSTRACT

Baculovirus is a promising vaccine deliver vector due to its biosafety profiles, gene transfer efficiency, ability to display small foreign antigens on its surface, strong adjuvant activities, etc. A dual vector for peptide antigens and a DNA vaccine delivery was constructed. In this vector, a tetrameric glycoprotein neuraminidase (NA) from influenza A virus (H5N1) serves as a baculovirus surface protein to improve baculovirus transduction efficiency and a partner for displaying the target peptide antigen. Nucleotides encoding target peptides could be fused to a full length NA gene, at the lower part of its head structure, integrated into Autographa californica multinucleopolyhedrovirus genome and expressed under the control of a White Spot Syndrome Virus IE-1 shuttle promoter. Angiotensin II (AngII) peptides, a potent vasoconstrictor that causes high blood pressure, was our target antigen. The recombinant NA-AngII pseudotyped baculovirus had the AngII peptides fused to the NA and displayed on its surface. In vitro studies revealed that this recombinant baculovirus successfully delivered AngII peptides, as DNA vaccine, into human HEK293A cells. A single subcutaneous injection of the recombinant NA-AngII pseudotyped baculovirus into moderately high blood pressure rats at 4 × 109 pfu/rat, stimulated anti-AngII antibody production and their systolic blood pressure (SBP) levels were found to have decreased. In addition, a single intranasal immunization at 8 × 108 pfu/rat, raised anti-AngII antibodies in a rat and its SBP was also reduced. The recombinant neuraminidase pseudotyped baculovirus is a potential vector for AngII peptide antigen and DNA vaccine for subcutaneous or intranasal immunization for treatment of hypertension.

8.
J Biotechnol ; 259: 19-25, 2017 Oct 10.
Article in English | MEDLINE | ID: mdl-28780162

ABSTRACT

Defective virus accumulations during baculovirus passages in insect cell culture are impediments to large scale baculovirus production. A genotypically defined virus inoculum comprises of stable genotypes was proposed for production of a Thailand isolated SeMNPV in Se-UCR1 insect cells. Targeted genotypes were from wild-type SeMNPV containing naturally mixed genotypes. Plaque assays, PCR screening and XbaI restriction analysis were employed for genotype purification, genotype selection and genome analysis, respectively. A selective marker was pif2 encoded per os infection factor which predominantly deleted, along with the adjacent pif1, in defective viruses. A purified, genetically stable pif2+ (and pif1+) genotype, namely SeThpif2+, was the first tryout. SeThpif2+ occlusion bodies (OBs) possessed insecticidal activity but at lower level than the wild-type. When the SeThpif2+ was co-infected with another purified, genetically stable pif1- (and pif2-) genotype, SeThpif2-, at ratio of 3:1, respectively, mixed genotypes OBs had 2.8 times greater insecticidal activity than the SeThpif2+ alone. Dilution of deleterious PIF1 of SeThpif2+ by the pif1 deletion genotypes, SeThpif2-, was the key for this enhanced activity. A promising approach was described for SeMNPV production in vitro using the virus inoculum whose genotypes compositions were designed to mimic virus interactions in the wild-type, to generate per oral infective baculovirus.


Subject(s)
Insecticides/metabolism , Nucleopolyhedroviruses , Virus Cultivation/methods , Animals , Cell Line , Larva/virology , Nucleopolyhedroviruses/genetics , Nucleopolyhedroviruses/growth & development , Nucleopolyhedroviruses/isolation & purification , Spodoptera/physiology
9.
Environ Sci Pollut Res Int ; 23(2): 962-73, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25943511

ABSTRACT

Cadmium (Cd) contaminated in rice grains is a serious problem because most Asians consume rice on a daily basis. Rice grown in Cd-contaminated soil normally did not have high concentration of Cd. However, soil samples used in this study had high concentrations of Cd. The purpose of this study was to clearly see the effects of biochar and microorganism addition in rice growing in Cd-contaminated soil. The initial Cd concentration in Cd-contaminated soil used in this study was about 650 mg kg(-1). Cadmium concentration in rice plants grown in Cd-contaminated soil with the addition of 1% (w/w) different biochars such as sawdust fly ash (SDFA), bagasse fly ash (BGFA), and rice husk ash (RHA) was investigated. The results showed that SDFA was the best biochar in terms of reducing cadmium accumulation in rice grains when compared to BGFA and RHA under the same conditions. In addition, rice plants grown in Cd-contaminated soil with the addition of various nonpathogenic microorganisms, such as Pseudomonas aeruginosa, Bacillus subtilis, and Beauveria bassiana were also studied. The results showed that the addition of 2% (v/v) microorganisms can reduce Cd accumulation in grains. It was found that grains obtained from Cd-contaminated soil with the addition of P. aeruginosa had the lowest cadmium concentration compared to the ones from soil amended with other strains. This was due to the fact that P. aeruginosa adsorbed more Cd itself into its cells than other strains. The rice plants grown in Cd-contaminated soil with the addition of biochars and microorganisms were also compared. The results showed that adding 2% (v/v) microorganisms seemed to reduce Cd accumulation in rice grains better than adding 1% (w/w) biochars. In addition, the amounts of calcium and magnesium in rice grains and the dry weight of plant in Cd-contaminated soil amended with P. aeruginosa were the highest in comparison to other microorganisms, biochars, and the soil without any amendments (Cd-soil control). It might be possible that microorganisms can cause leaching of Ca, Mg, etc. from contaminated soil and compete with Cd to be uptaken by plants. This would cause the increase in plant dry weight and higher mineral nutrients accumulation in grains. Both biochars and microorganisms are suitable for reducing the amount of Cd in rice grains. The application should depend on farmers, biochars available in nearby areas, etc. Therefore, microorganisms and biochars can be used to solve the problem of cadmium contamination in rice grains.


Subject(s)
Cadmium/metabolism , Charcoal , Oryza/metabolism , Soil Microbiology , Soil Pollutants/metabolism , Coal Ash , Environmental Pollution , Oryza/growth & development , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...