Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 24(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38931591

ABSTRACT

In recent years, there has been a growing interest in developing portable and personal devices for measuring air quality and surrounding pollutants, partly due to the need for ventilation in the aftermath of COVID-19 situation. Moreover, the monitoring of hazardous chemical agents is a focus for ensuring compliance with safety standards and is an indispensable component in safeguarding human welfare. Air quality measurement is conducted by public institutions with high precision but costly equipment, which requires constant calibration and maintenance by highly qualified personnel for its proper operation. Such devices, used as reference stations, have a low spatial resolution since, due to their high cost, they are usually located in a few fixed places in the city or region to be studied. However, they also have a low temporal resolution, providing few samples per hour. To overcome these drawbacks and to provide people with personalized and up-to-date air quality information, a personal device (smartwatch) based on MEMS gas sensors has been developed. The methodology followed to validate the performance of the prototype was as follows: firstly, the detection capability was tested by measuring carbon dioxide and methane at different concentrations, resulting in low detection limits; secondly, several experiments were performed to test the discrimination capability against gases such as toluene, xylene, and ethylbenzene. principal component analysis of the data showed good separation and discrimination between the gases measured.


Subject(s)
COVID-19 , Carbon Dioxide , Environmental Monitoring , Environmental Monitoring/instrumentation , Environmental Monitoring/methods , Humans , Carbon Dioxide/analysis , Air Pollutants/analysis , Air Pollution/analysis , Gases/analysis , SARS-CoV-2/isolation & purification , Methane/analysis
2.
Micromachines (Basel) ; 14(9)2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37763924

ABSTRACT

Insufficient control of tomato ripening before harvesting and infection by fungal pests produce large economic losses in world tomato production. Aroma is an indicative parameter of the state of maturity and quality of the tomato. This study aimed to design an electronic system (TOMATO-NOSE) consisting of an array of 12 electrochemical sensors, commercial metal oxide semiconductor sensors, an optical camera for a lateral flow reader, and a smartphone application for device control and data storage. The system was used with tomatoes in different states of ripeness and health, as well as tomatoes infected with Botrytis cinerea. The results obtained through principal component analysis of the olfactory pattern of tomatoes and the reader images show that TOMATO-NOSE is a good tool for the farmer to control tomato ripeness before harvesting and for the early detection of Botrytis cinerea.

3.
Sensors (Basel) ; 22(15)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35957258

ABSTRACT

The International Olive Council (IOC) established that olives must be free of odors, off-flavors, and absent of abnormal ongoing alterations or fermentations. The use of electronic devices could help when classifying defects in a fast, non-destructive, cheap, and environmentally friendly way. For all of that, table olives were evaluated according to IOC regulation in order to classify the defect predominant perceiving (DPP) of the table olives and their intensity. Abnormal fermentation defects of Spanish-style table olives were assessed previously by an IOC-validated tasting panel. 'Zapateria', 'Putrid', and 'Butyric' were the defects found at different concentrations. Different volatile compounds were identified by gas chromatography in altered table olives. The same samples were measured with an electronic nose device (E-nose). E-nose data combined with chemometrics algorithms, such as PCA and PLS-DA, were able to successfully discriminate between healthy and non-healthy table olives, being this last one also separated between the first and second categories. Volatile compounds obtained with gas chromatography could be related to the E-nose measuring and sensory analysis, being capable of matching the different defects with their correspondents' volatile compounds.


Subject(s)
Olea , Fermentation , Food Microbiology , Olea/chemistry , Smell , Taste
4.
Chemosphere ; 307(Pt 3): 135948, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35963375

ABSTRACT

Breathing poor-quality air is a global threat at the same level as unhealthy diets or tobacco smoking, so the availability of affordable instrument for the measurement of air pollutant levels is highly relevant for human and environmental protection. We developed an air quality monitoring platform that comprises a wearable device embedding low-cost metal oxide semiconductor (MOS) gas sensors, a PM sensor, and a smartphone for collecting the data using Bluetooth Low Energy (BLE) communication. Our own developed app displays information about the air surrounding the user and sends the gathered geolocalized data to a cloud, where the users can map the air quality levels measured in the network. The resulting device is small-sized, light-weighted, compact, and belt-worn, with a user-friendly interface and a low cost. The data collected by the sensor array are validated in two experimental setups, first in laboratory-controlled conditions and then against referential pollutant concentrations measured by standard instruments in an outdoor environment. The performance of our air quality platform was tested in a field testing campaign in Barcelona with six moving devices acting as wireless sensor nodes. Devices were trained by means of machine learning algorithms to differentiate between air quality index (AQI) referential concentration values (97% success in the laboratory, 82.3% success in the field). Humidity correction was applied to all data.


Subject(s)
Air Pollutants , Air Pollution , Wearable Electronic Devices , Air Pollutants/analysis , Air Pollution/analysis , Cloud Computing , Environmental Monitoring/methods , Humans , Oxides
5.
Front Microbiol ; 13: 897178, 2022.
Article in English | MEDLINE | ID: mdl-35602089

ABSTRACT

The chemical composition of the brine for Spanish-style table olives plays a crucial role during the fermentation process. Traditional laboratory analysis requires a high consumption of reagents, highly qualified personnel, sophisticated equipment, long analysis times, and large amounts of samples. Analysis carried out using an electronic nose (E-nose) offers an alternative, non-destructive technique and is useful in determining alterations in brines caused by microorganisms. In the present research, nine mold strains isolated from spoiled olives were inoculated in synthetic brines to determine the effect of microbial development on sensory quality, volatile profile, and the capacity of E-nose to discriminate altered brines from the healthy ones. The brines inoculated with the mold strains presented negative attributes related to aromas of mold, wood, leather, rancidity and, organic solvents among others. The highest intensity of defect was presented by the brines inoculated with the strains Galactomyces geotricum (G.G.2); three Penicillium expansum (P.E.3, P.E.4, and P.E.20); one Penicillium glabrum (P.G.19); three Aspergillus flavus (A.F.9, A.F.18, and A.F.21); and one Fusarium solani (F.S.11). A total of 19 volatile compounds were identified by gas chromatography. Sensory analysis allowed us to classify the synthetic brines based on the degree of alteration produced by the mold strains used. Also, the E-nose data were able to discriminate the inoculated brines regardless of the intensity of the defect. These results demonstrate the capacity of the E-nose to discriminate alterations in brines produced by molds, thereby making it a useful tool to be applied during the elaboration process to detect early alterations in table olive fermentation.

6.
Sensors (Basel) ; 22(9)2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35591143

ABSTRACT

2,4,6-trichloroanisole (TCA) is mainly responsible for cork taint in wine, which causes significant economic losses; therefore, the wine and cork industries demand an immediate, economic, noninvasive and on-the-spot solution. In this work, we present a novel prototype of an electronic nose (e-nose) using an array of digital and analog metal-oxide gas sensors with a total of 31 signals, capable of detecting TCA, and classifying cork samples with low TCA concentrations (≤15.1 ng/L). The results show that the device responds to low concentrations of TCA in laboratory conditions. It also differentiates among the inner and outer layers of cork bark (81.5% success) and distinguishes among six different samples of granulated cork (83.3% success). Finally, the device can predict the concentration of a new sample within a ±10% error margin.


Subject(s)
Electronic Nose , Wine , Anisoles/analysis , Wine/analysis
7.
J Sci Food Agric ; 102(6): 2232-2241, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34622476

ABSTRACT

BACKGROUND: Olive oil continues to be the main destination for olives. The production of table olives is increasing. 'Californian-style' processes are among the most frequently employed to produce oxidized olives. Sensory evaluation requires the development of an instrumental detection method that can be used as an adjunct to traditional tasting panels. RESULTS: An electronic nose (E-nose) was used to classify two varieties of olives following exposure to different sterilization. Principal component analysis (PCA) revealed that both varieties had different volatile profiles. Sensory panel evaluations were similar for both. Partial least squares-discriminant analysis (PLS-DA) obtained from the E-nose was able to separate the two varieties and explained 82% of total variance. Moreover, volatile profiles correctly classified olives according to sterilization times recorded up to 121 °C . The only exception was at F0 ≥ 22 min, at which a plot of PCA outcomes failed to differentiate scores. E-nose data showed similar results to those produced from the volatile analysis when grouping samples were sterilized to F0 ≥ 18 min, at the same time distinguishing these samples from those subjected to less intense thermal treatments. A partial least squares (PLS) chemometric approach was evaluated for quantifying important olive quality parameters. With regards to validation parameters, R P 2 pertaining to perceived defect was 0.88, whilst R P 2 pertaining to overall assessment was 0.78. CONCLUSIONS: E-nose offers a fast, inexpensive and non-destructive method for discriminating between varieties and thermal treatments up to a point at which cooking defects are highly similar (from F0  = 18 onwards). © 2021 Society of Chemical Industry.


Subject(s)
Electronic Nose , Olea , Least-Squares Analysis , Olive Oil/analysis , Sterilization
8.
Molecules ; 26(17)2021 Sep 02.
Article in English | MEDLINE | ID: mdl-34500786

ABSTRACT

Current legislation in Spain indicates that table olives must be free of off-odors and off-flavors and without symptoms of ongoing alteration or abnormal fermentations. In this regard, the International Olive Council (IOC) has developed a protocol for the sensory classification of table olives according to the intensity of the predominantly perceived defect (PPD). An electronic nose (e-nose) was used to assess the abnormal fermentation defects of Spanish-style table olives that were previously classified by a tasting panel according to the IOC protocol, namely zapateria, butyric, putrid, and musty or humidity. When olives with different defects were mixed, the putrid defect had the greatest sensory impact on the others, while the butyric defect had the least sensory dominance. A total of 49 volatile compounds were identified by gas chromatography, and each defect was characterized by a specific profile. The e-nose data were analyzed using principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA). The different defects were clearly separated from each other and from the control treatment, independently of PPD intensity. Moreover, the e-nose differentiated control olives from table olives with combined sensory defects despite the dilution effect resulting from the combination. These results demonstrate that e-nose can be used as an olfactory sensor for the organoleptic classification of table olives and can successfully support the tasting panel.


Subject(s)
Electronic Nose , Fermentation , Olea/metabolism , Humans , Spain
9.
Sensors (Basel) ; 20(3)2020 Jan 31.
Article in English | MEDLINE | ID: mdl-32023974

ABSTRACT

This paper introduces a miniaturized personal electronic nose (39 mm × 33 mm), which is managed through an app developed on a smartphone. The electronic nose (e-nose) incorporates four new generation digital gas sensors. These MOx-type sensors incorporate a microcontroller in the same package, being also smaller than the previous generation. This makes it easier to integrate them into the electronics and improves their performance. In this research, the application of the device is focused on the detection of atmospheric pollutants in order to complement the information provided by the reference stations. To validate the system, it has been tested with different concentrations of NOx including some tests specifically developed to study the behavior of the device in different humidity conditions. Finally, a mobile application has been developed to provide classification services. In this regard, a neural network has been developed, trained, and integrated into a smartphone to process the information retrieved from e-nose devices.

10.
J Clin Microbiol ; 40(3): 951-8, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11880422

ABSTRACT

Rabies remains a public health problem in the Americas because of the great diversity of wild reservoirs that maintain the virus in nature. Here we report the antigenic characterization of 254 rabies viruses isolated from 148 nonreservoir and 106 reservoir hosts collected in 27 states of Mexico. Nine out of 11 antigenic variants previously reported in the United States were detected in Mexico by using the limited panel of monoclonal antibodies donated by the Centers for Disease Control and Prevention. Some rabies virus variants were isolated from their natural reservoirs, which were also taxonomically identified. Terrestrial reservoirs included stray dogs with V1, Urocyon cineroargenteus (gray foxes) with V7, and two subspecies of Spilogale putorius (spotted skunks) with different viral variants (V8 and V10). Aerial hosts included Tadarida brasiliensis mexicana and Desmodus rotundus, which harbored V9 and V4 and harbored V11, respectively. All variants, with the exception of V9, were isolated from nonreservoir hosts, while V3, V4, and V5 were not isolated from their natural reservoirs but only from livestock. Rabies virus antigenic typing allowed us to determine rabies reservoirs and their distribution in Mexico, data which will probably improve prevention and control of the illness in humans and in the reservoir hosts.


Subject(s)
Antigens, Viral/analysis , Rabies virus/immunology , Animals , Disease Reservoirs , Humans , Mexico
11.
SELECTION OF CITATIONS
SEARCH DETAIL
...