Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
1.
Nanomaterials (Basel) ; 14(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38727328

ABSTRACT

(1) Background: Despite the encouraging indications regarding the suitability (biocompatibility) of iron carbide nanoparticles (ICNPs) in various biomedical applications, the published evidence of their biosafety is dispersed and relatively sparse. The present review synthesizes the existing nanotoxicological data from in vitro studies relevant to the diagnosis and treatment of cancer. (2) Methods: A systematic review was performed in electronic databases (PubMed, Scopus, and Wiley Online Library) on December 2023, searching for toxicity assessments of ICNPs of different sizes, coatings, and surface modifications investigated in immortalized human and murine cell lines. The risk of bias in the studies was assessed using the ToxRTool for in vitro studies. (3) Results: Among the selected studies (n = 22), cell viability emerged as the most frequently assessed cellular-level toxicity endpoint. The results of the meta-analysis showed that cell models treated with ICNPs had a reduced cell viability (SMD = -2.531; 95% CI: -2.959 to -2.109) compared to untreated samples. A subgroup analysis was performed due to the high magnitude of heterogeneity (I2 = 77.1%), revealing that ICNP concentration and conjugated ligands are the factors that largely influence toxicity (p < 0.001). (4) Conclusions: A dose-dependent cytotoxicity of ICNP exposure was observed, regardless of the health status of the cell, tested organism, and NP size. Inconsistent reporting of ICNP physicochemical properties was noted, which hinders comparability among the studies. A comprehensive exploration of the available in vivo studies is required in future research to assess the safety of ICNPs' use in bioimaging and cancer treatment.

2.
Comput Struct Biotechnol J ; 25: 47-60, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38646468

ABSTRACT

The rapid advance of nanotechnology has led to the development and widespread application of nanomaterials, raising concerns regarding their potential adverse effects on human health and the environment. Traditional (experimental) methods for assessing the nanoparticles (NPs) safety are time-consuming, expensive, and resource-intensive, and raise ethical concerns due to their reliance on animals. To address these challenges, we propose an in silico workflow that serves as an alternative or complementary approach to conventional hazard and risk assessment strategies, which incorporates state-of-the-art computational methodologies. In this study we present an automated machine learning (autoML) scheme that employs dose-response toxicity data for silver (Ag), titanium dioxide (TiO2), and copper oxide (CuO) NPs. This model is further enriched with atomistic descriptors to capture the NPs' underlying structural properties. To overcome the issue of limited data availability, synthetic data generation techniques are used. These techniques help in broadening the dataset, thus improving the representation of different NP classes. A key aspect of this approach is a novel three-step applicability domain method (which includes the development of a local similarity approach) that enhances user confidence in the results by evaluating the prediction's reliability. We anticipate that this approach will significantly expedite the nanosafety assessment process enabling regulation to keep pace with innovation, and will provide valuable insights for the design and development of safe and sustainable NPs. The ML model developed in this study is made available to the scientific community as an easy-to-use web-service through the Enalos Cloud Platform (www.enaloscloud.novamechanics.com/sabydoma/safenanoscope/), facilitating broader access and collaborative advancements in nanosafety.

3.
Comput Struct Biotechnol J ; 25: 34-46, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38549954

ABSTRACT

ASCOT (an acronym derived from Ag-Silver, Copper Oxide, Titanium Oxide) is a user-friendly web tool for digital construction of electrically neutral, energy-minimized spherical nanoparticles (NPs) of Ag, CuO, and TiO2 (both Anatase and Rutile forms) in vacuum, integrated into the Enalos Cloud Platform (https://www.enaloscloud.novamechanics.com/sabydoma/ascot/). ASCOT calculates critical atomistic descriptors such as average potential energy per atom, average coordination number, common neighbour parameter (used for structural classification in simulations of crystalline phases), and hexatic order parameter (which measures how closely the local environment around a particle resembles perfect hexatic symmetry) for both core (over 4 Å from the surface) and shell (within 4 Å of the surface) regions of the NPs. These atomistic descriptors assist in predicting the most stable NP size based on lowest per atom energy and serve as inputs for developing machine learning models to predict the toxicity of these nanomaterials. ASCOT's automated backend requires minimal user input in order to construct the digital NPs: inputs needed are the material type (Ag, CuO, TiO2-Anatase, TiO2-Rutile), target diameter, a Force-Field from a pre-validated list, and the energy minimization parameters, with the tool providing a set of default values for novice users.

4.
Int J Mol Sci ; 24(21)2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37958877

ABSTRACT

In this in silico study, we conducted an in-depth exploration of the potential of natural products and antihypertensive molecules that could serve as inhibitors targeting the key proteins of the SARS-CoV-2 virus: the main protease (Mpro) and the spike (S) protein. By utilizing Induced Fit Docking (IFD), we assessed the binding affinities of the molecules under study to these crucial viral components. To further comprehend the stability and molecular interactions of the "protein-ligand" complexes that derived from docking studies, we performed molecular dynamics (MD) simulations, shedding light on the molecular basis of potential drug candidates for COVID-19 treatment. Moreover, we employed Molecular Mechanics Generalized Born Surface Area (MM-GBSA) calculations on all "protein-ligand" complexes, underscoring the robust binding capabilities of rosmarinic acid, curcumin, and quercetin against Mpro, and salvianolic acid b, rosmarinic acid, and quercetin toward the S protein. Furthermore, in order to expand our search for potent inhibitors, we conducted a structure similarity analysis, using the Enalos Suite, based on the molecules that indicated the most favored results in the in silico studies. The Enalos Suite generated 115 structurally similar compounds to salvianolic acid, rosmarinic acid, and quercetin. These compounds underwent IFD calculations, leading to the identification of two salvianolic acid analogues that exhibited strong binding to all the examined binding sites in both proteins, showcasing their potential as multi-target inhibitors. These findings introduce exciting possibilities for the development of novel therapeutic agents aiming to effectively disrupt the SARS-CoV-2 virus lifecycle.


Subject(s)
Biological Products , COVID-19 , Humans , Antihypertensive Agents/pharmacology , SARS-CoV-2 , Biological Products/pharmacology , COVID-19 Drug Treatment , Ligands , Quercetin , Spike Glycoprotein, Coronavirus , Molecular Dynamics Simulation , Peptide Hydrolases , Molecular Docking Simulation , Protease Inhibitors/pharmacology , Antiviral Agents/pharmacology , Rosmarinic Acid
5.
Int J Mol Sci ; 24(7)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37047543

ABSTRACT

The discovery and development of new drugs are extremely long and costly processes. Recent progress in artificial intelligence has made a positive impact on the drug development pipeline. Numerous challenges have been addressed with the growing exploitation of drug-related data and the advancement of deep learning technology. Several model frameworks have been proposed to enhance the performance of deep learning algorithms in molecular design. However, only a few have had an immediate impact on drug development since computational results may not be confirmed experimentally. This systematic review aims to summarize the different deep learning architectures used in the drug discovery process and are validated with further in vivo experiments. For each presented study, the proposed molecule or peptide that has been generated or identified by the deep learning model has been biologically evaluated in animal models. These state-of-the-art studies highlight that even if artificial intelligence in drug discovery is still in its infancy, it has great potential to accelerate the drug discovery cycle, reduce the required costs, and contribute to the integration of the 3R (Replacement, Reduction, Refinement) principles. Out of all the reviewed scientific articles, seven algorithms were identified: recurrent neural networks, specifically, long short-term memory (LSTM-RNNs), Autoencoders (AEs) and their Wasserstein Autoencoders (WAEs) and Variational Autoencoders (VAEs) variants; Convolutional Neural Networks (CNNs); Direct Message Passing Neural Networks (D-MPNNs); and Multitask Deep Neural Networks (MTDNNs). LSTM-RNNs were the most used architectures with molecules or peptide sequences as inputs.


Subject(s)
Artificial Intelligence , Deep Learning , Neural Networks, Computer , Algorithms , Drug Discovery/methods
6.
ACS Nano ; 17(7): 6350-6361, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36842071

ABSTRACT

As antimicrobials, graphene materials (GMs) may have advantages over traditional antibiotics due to their physical mechanisms of action which ensure less chance of development of microbial resistance. However, the fundamental question as to whether the antibacterial mechanism of GMs originates from parallel interaction or perpendicular interaction, or from a combination of these, remains poorly understood. Here, we show both experimentally and theoretically that GMs with high surface oxygen content (SOC) predominantly attach in parallel to the bacterial cell surface when in the suspension phase. The interaction mode shifts to perpendicular interaction when the SOC reaches a threshold of ∼0.3 (the atomic percent of O in the total atoms). Such distinct interaction modes are highly related to the rigidity of GMs. Graphene oxide (GO) with high SOC is very flexible and thus can wrap bacteria while reduced GO (rGO) with lower SOC has higher rigidity and tends to contact bacteria with their edges. Neither mode necessarily kills bacteria. Rather, bactericidal activity depends on the interaction of GMs with surrounding biomolecules. These findings suggest that variation of SOC of GMs is a key factor driving the interaction mode with bacteria, thus helping to understand the different possible physical mechanisms leading to their antibacterial activity.


Subject(s)
Graphite , Graphite/pharmacology , Reactive Oxygen Species/metabolism , Oxygen , Anti-Bacterial Agents/pharmacology , Bacteria/metabolism
7.
Eur J Med Chem ; 249: 115130, 2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36702053

ABSTRACT

Robust experimental evidence has highlighted the role of Autotaxin (ATX)/Lysophosphatidic acid (LPA) axis not only in the pathogenesis of chronic inflammatory conditions and especially in fibroproliferative diseases but also in several types of cancer. As a result, different series of substrate-, lipid-based and small-molecule ATX inhibitors have been identified thus far by both academia and pharma. The "crowning achievement" of these drug discovery campaigns was the development and entry of the first-in-class ATX inhibitor (ziritaxestat, GLPG-1690) in advanced clinical trials against idiopathic pulmonary fibrosis. Herein, the potency optimization efforts of a new series of Autotaxin inhibitors, namely 2-substituted-2,6-dihydro-4H-thieno[3,4-c]pyrazol-1-substituted amide, is described using a previously identified novel chemical scaffold as a "hit". The mode of inhibition of the most promising ATX inhibitors was investigated, while their cellular activity, aqueous solubility and cytotoxicity were evaluated. Our pharmacological results were corroborated by chemoinformatic tools (molecular docking and molecular dynamics simulations) deployed, to provide insight into the binding mechanism of the synthesized inhibitors to ATX.


Subject(s)
Idiopathic Pulmonary Fibrosis , Neoplasms , Humans , Cheminformatics , Chronic Disease , Idiopathic Pulmonary Fibrosis/drug therapy , Molecular Docking Simulation , Neoplasms/drug therapy , Phosphoric Diester Hydrolases/metabolism
8.
Nanomaterials (Basel) ; 12(22)2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36432221

ABSTRACT

A freely available "in vitro dosimetry" web application is presented enabling users to predict the concentration of nanomaterials reaching the cell surface, and therefore available for attachment and internalization, from initial dispersion concentrations. The web application is based on the distorted grid (DG) model for the dispersion of engineered nanoparticles (NPs) in culture medium used for in vitro cellular experiments, in accordance with previously published protocols for cellular dosimetry determination. A series of in vitro experiments for six different NPs, with Ag and Au cores, are performed to demonstrate the convenience of the web application for calculation of exposure concentrations of NPs. Our results show that the exposure concentrations at the cell surface can be more than 30 times higher compared to the nominal or dispersed concentrations, depending on the NPs' properties and their behavior in the cell culture medium. Therefore, the importance of calculating the exposure concentration at the bottom of the cell culture wells used for in vitro arrays, i.e., the particle concentration at the cell surface, is clearly presented, and the tool introduced here allows users easy access to such calculations. Widespread application of this web tool will increase the reliability of subsequent toxicity data, allowing improved correlation of the real exposure concentration with the observed toxicity, enabling the hazard potentials of different NPs to be compared on a more robust basis.

9.
J Cheminform ; 14(1): 57, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36002868

ABSTRACT

Management of nanomaterials and nanosafety data needs to operate under the FAIR (findability, accessibility, interoperability, and reusability) principles and this requires a unique, global identifier for each nanomaterial. Existing identifiers may not always be applicable or sufficient to definitively identify the specific nanomaterial used in a particular study, resulting in the use of textual descriptions in research project communications and reporting. To ensure that internal project documentation can later be linked to publicly released data and knowledge for the specific nanomaterials, or even to specific batches and variants of nanomaterials utilised in that project, a new identifier is proposed: the European Registry of Materials Identifier. We here describe the background to this new identifier, including FAIR interoperability as defined by FAIRSharing, identifiers.org, Bioregistry, and the CHEMINF ontology, and show how it complements other identifiers such as CAS numbers and the ongoing efforts to extend the InChI identifier to cover nanomaterials. We provide examples of its use in various H2020-funded nanosafety projects.

10.
Nat Nanotechnol ; 17(9): 924-932, 2022 09.
Article in English | MEDLINE | ID: mdl-35982314

ABSTRACT

Engineered nanomaterials (ENMs) enable new and enhanced products and devices in which matter can be controlled at a near-atomic scale (in the range of 1 to 100 nm). However, the unique nanoscale properties that make ENMs attractive may result in as yet poorly known risks to human health and the environment. Thus, new ENMs should be designed in line with the idea of safe-and-sustainable-by-design (SSbD). The biological activity of ENMs is closely related to their physicochemical characteristics, changes in these characteristics may therefore cause changes in the ENMs activity. In this sense, a set of physicochemical characteristics (for example, chemical composition, crystal structure, size, shape, surface structure) creates a unique 'representation' of a given ENM. The usability of these characteristics or nanomaterial descriptors (nanodescriptors) in nanoinformatics methods such as quantitative structure-activity/property relationship (QSAR/QSPR) models, provides exciting opportunities to optimize ENMs at the design stage by improving their functionality and minimizing unforeseen health/environmental hazards. A computational screening of possible versions of novel ENMs would return optimal nanostructures and manage ('design out') hazardous features at the earliest possible manufacturing step. Safe adoption of ENMs on a vast scale will depend on the successful integration of the entire bulk of nanodescriptors extracted experimentally with data from theoretical and computational models. This Review discusses directions for developing appropriate nanomaterial representations and related nanodescriptors to enhance the reliability of computational modelling utilized in designing safer and more sustainable ENMs.


Subject(s)
Nanostructures , Computer Simulation , Humans , Nanostructures/chemistry , Quantitative Structure-Activity Relationship , Reproducibility of Results
11.
Chemosphere ; 288(Pt 2): 132564, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34673043

ABSTRACT

This review article summarizes advances in computational chemistry and cheminformatics methods and techniques that are used or have potential for use in reducing health and environmental impacts of Chemical Warfare Agents (CWA). These methods, include, but are not limited to, predictive modeling, data mining and virtual screening, similarity searching, molecular docking and dynamics and are briefly presented here. Applications of these in silico approaches, specifically for the protection of personnel and civilians against CWA, but also beyond, are discussed. CWA include toxic chemicals that can cause death, injury, or temporary incapacitation through their chemical action. CWA impose a significant worldwide threat and as such, destruction, remediation as well as protection measurements need to be carefully designed. Towards this goal computational chemistry and cheminformatics can play a key role specifically as far as decontamination, risk assessment and risk management are concerned. Among the wide range of in silico techniques applied for CWA, specific previously published paradigms are presented, including toxicity and property prediction, CWA simulant identification and CWA detoxification. Beyond CWA research, other applications with military interest are briefly presented and emerging trends of potential relevance noted.


Subject(s)
Chemical Warfare Agents , Chemical Warfare Agents/toxicity , Computational Chemistry , Environment , Molecular Docking Simulation
14.
Int J Mol Sci ; 22(19)2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34638561

ABSTRACT

Tumor necrosis factor (TNF) is a regulator of several chronic inflammatory diseases, such as rheumatoid arthritis. Although anti-TNF biologics have been used in clinic, they render several drawbacks, such as patients' progressive immunodeficiency and loss of response, high cost, and intravenous administration. In order to find new potential anti-TNF small molecule inhibitors, we employed an in silico approach, aiming to find natural products, analogs of Ampelopsin H, a compound that blocks the formation of TNF active trimer. Two out of nine commercially available compounds tested, Nepalensinol B and Miyabenol A, efficiently reduced TNF-induced cytotoxicity in L929 cells and production of chemokines in mice joints' synovial fibroblasts, while Nepalensinol B also abolished TNF-TNFR1 binding in non-toxic concentrations. The binding mode of the compounds was further investigated by molecular dynamics and free energy calculation studies, using and advancing the Enalos Asclepios pipeline. Conclusively, we propose that Nepalensinol B, characterized by the lowest free energy of binding and by a higher number of hydrogen bonds with TNF, qualifies as a potential lead compound for TNF inhibitors' drug development. Finally, the upgraded Enalos Asclepios pipeline can be used for improved identification of new therapeutics against TNF-mediated chronic inflammatory diseases, providing state-of-the-art insight on their binding mode.


Subject(s)
Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Biological Products/chemistry , Biological Products/pharmacology , Drug Discovery/methods , Tumor Necrosis Factor Inhibitors/chemistry , Tumor Necrosis Factor Inhibitors/pharmacology , Animals , Binding Sites/drug effects , Cell Line , Cell Survival/drug effects , Computer Simulation , Drug Design , Fibroblasts/drug effects , Mice , Primary Cell Culture , Synovial Fluid/drug effects , Tumor Necrosis Factor-alpha/toxicity
15.
Chemosphere ; 285: 131452, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34265725

ABSTRACT

Nanoinformatics models to predict the toxicity/ecotoxicity of nanomaterials (NMs) are urgently needed to support commercialization of nanotechnologies and allow grouping of NMs based on their physico-chemical and/or (eco)toxicological properties, to facilitate read-across of knowledge from data-rich NMs to data-poor ones. Here we present the first ecotoxicological read-across models for predicting NMs ecotoxicity, which were developed in accordance with ECHA's recommended strategy for grouping of NMs as a means to explore in silico the effects of a panel of freshly dispersed versus environmentally aged (in various media) Ag and TiO2 NMs on the freshwater zooplankton Daphnia magna, a keystone species used in regulatory testing. The dataset used to develop the models consisted of dose-response data from 11 NMs (5 TiO2 NMs of identical cores with different coatings, and 6 Ag NMs with different capping agents/coatings) each dispersed in three different media (a high hardness medium (HH Combo) and two representative river waters containing different amounts of natural organic matter (NOM) and having different ionic strengths), generated in accordance with the OECD 202 immobilization test. The experimental hypotheses being tested were (1) that the presence of NOM in the medium would reduce the toxicity of the NMs by forming an ecological corona, and (2) that environmental ageing of NMs reduces their toxicity compared to the freshly dispersed NMs irrespective of the medium composition (salt only or NOM-containing). As per the ECHA guidance, the NMs were grouped into two categories - freshly dispersed and 2-year-aged and explored in silico to identify the most important features driving the toxicity in each group. The final predictive models have been validated according to the OECD criteria and a QSAR model report form (QMRF) report included in the supplementary information to support adoption of the models for regulatory purposes.


Subject(s)
Daphnia , Nanostructures , Animals , Ecotoxicology
16.
Nat Plants ; 7(7): 864-876, 2021 07.
Article in English | MEDLINE | ID: mdl-34168318

ABSTRACT

Climate change, increasing populations, competing demands on land for production of biofuels and declining soil quality are challenging global food security. Finding sustainable solutions requires bold new approaches and integration of knowledge from diverse fields, such as materials science and informatics. The convergence of precision agriculture, in which farmers respond in real time to changes in crop growth with nanotechnology and artificial intelligence, offers exciting opportunities for sustainable food production. Coupling existing models for nutrient cycling and crop productivity with nanoinformatics approaches to optimize targeting, uptake, delivery, nutrient capture and long-term impacts on soil microbial communities will enable design of nanoscale agrochemicals that combine optimal safety and functionality profiles.


Subject(s)
Agrochemicals , Artificial Intelligence , Crop Production/methods , Crops, Agricultural/growth & development , Nanotechnology , Sustainable Development
17.
Int J Mol Sci ; 22(4)2021 Feb 07.
Article in English | MEDLINE | ID: mdl-33562347

ABSTRACT

. De novo drug design is a computational approach that generates novel molecular structures from atomic building blocks with no a priori relationships. Conventional methods include structure-based and ligand-based design, which depend on the properties of the active site of a biological target or its known active binders, respectively. Artificial intelligence, including machine learning, is an emerging field that has positively impacted the drug discovery process. Deep reinforcement learning is a subdivision of machine learning that combines artificial neural networks with reinforcement-learning architectures. This method has successfully been employed to develop novel de novo drug design approaches using a variety of artificial networks including recurrent neural networks, convolutional neural networks, generative adversarial networks, and autoencoders. This review article summarizes advances in de novo drug design, from conventional growth algorithms to advanced machine-learning methodologies and highlights hot topics for further development.


Subject(s)
Drug Design , Machine Learning , Neural Networks, Computer , Pharmaceutical Preparations/chemistry , Animals , Humans
18.
Sci Data ; 8(1): 49, 2021 02 08.
Article in English | MEDLINE | ID: mdl-33558569

ABSTRACT

Toxicogenomics (TGx) approaches are increasingly applied to gain insight into the possible toxicity mechanisms of engineered nanomaterials (ENMs). Omics data can be valuable to elucidate the mechanism of action of chemicals and to develop predictive models in toxicology. While vast amounts of transcriptomics data from ENM exposures have already been accumulated, a unified, easily accessible and reusable collection of transcriptomics data for ENMs is currently lacking. In an attempt to improve the FAIRness of already existing transcriptomics data for ENMs, we curated a collection of homogenized transcriptomics data from human, mouse and rat ENM exposures in vitro and in vivo including the physicochemical characteristics of the ENMs used in each study.


Subject(s)
Nanostructures/toxicity , Toxicogenetics , Transcriptome , Animals , Data Collection , Data Curation , Humans , Mice , Rats
19.
Nanomaterials (Basel) ; 11(1)2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33430326

ABSTRACT

Ensuring the safe and responsible use of nanotechnologies and nanoscale materials is imperative to maximize consumer confidence and drive commercialization of nano-enabled products that underpin innovation and advances in every industrial sector [...].

20.
NanoImpact ; 22: 100308, 2021 04.
Article in English | MEDLINE | ID: mdl-35559965

ABSTRACT

The physicochemical characterisation data from a library of 69 engineered nanomaterials (ENMs) has been exploited in silico following enrichment with a set of molecular descriptors that can be easily acquired or calculated using atomic periodicity and other fundamental atomic parameters. Based on the extended set of twenty descriptors, a robust and validated nanoinformatics model has been proposed to predict the ENM ζ-potential. The five critical parameters selected as the most significant for the model development included the ENM size and coating as well as three molecular descriptors, metal ionic radius (rion), the sum of metal electronegativity divided by the number of oxygen atoms present in a particular metal oxide (Σχ/nO) and the absolute electronegativity (χabs), each of which is thoroughly discussed to interpret their influence on ζ-potential values. The model was developed using the Isalos Analytics Platform and is available to the community as a web service through the Horizon 2020 (H2020) NanoCommons Transnational Access services and the H2020 NanoSoveIT Integrated Approach to Testing and Assessment (IATA).


Subject(s)
Nanostructures , Metals , Nanostructures/chemistry , Oxides
SELECTION OF CITATIONS
SEARCH DETAIL
...