Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Nanoscale ; 16(12): 5926-5940, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38441238

ABSTRACT

Organic chemists have made and are still making enormous efforts toward the development of novel green catalytic synthesis. The necessity arises from the imperative of safeguarding human health and the environment, while ensuring efficient and sustainable chemical production. Within this context, electrocatalysis provides a framework for the design of new organic reactions under mild conditions. Undoubtedly, nanostructured materials are under the spotlight as the most popular and in most cases efficient platforms for advanced organic electrosynthesis. This Minireview focuses on the recent developments in the use of nanostructured electrocatalysts, highlighting the correlation between their chemical structures and resulting catalytic abilities, and pointing to future perspectives for their application in cutting-edge areas.

2.
Angew Chem Int Ed Engl ; 62(48): e202313540, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37801043

ABSTRACT

Time-resolved EPR (TR-EPR) demonstrates the formation of well-defined spin triplet excitons in carbon nitride. This permits to experimentally probe the extent of the triplet wavefunction which delocalizes over several tri-s-triazine units. Analysis of the temperature dependence of the TR-EPR signal reveals the mobility of the triplet excitons. By employing monochromatic light excitation in the range 430-600 nm, the energy of the spin triplet is estimated to be ≈0.2 eV above the conduction band edge, proving that the triplet exciton lies above the corresponding singlet. Comparison between amorphous and graphitic forms establishes the singlet-triplet inversion as a general feature of carbon nitride materials.

3.
ACS Catal ; 13(15): 10205-10216, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37560189

ABSTRACT

Large-scale development of electrochemical cells is currently hindered by the lack of Earth-abundant electrocatalysts with high catalytic activity, product selectivity, and interfacial mass transfer. Herein, we developed an electrocatalyst fabrication approach which responds to these requirements by irradiating plasmonic titanium nitride (TiN) nanocubes self-assembled on a carbon gas diffusion layer in the presence of polymeric binders. The localized heating produced upon illumination creates unique conditions for the formation of TiN/F-doped carbon hybrids that show up to nearly 20 times the activity of the pristine electrodes. In alkaline conditions, they exhibit enhanced stability, a maximum H2O2 selectivity of 90%, and achieve a H2O2 productivity of 207 mmol gTiN-1 h-1 at 0.2 V vs RHE. A detailed electrochemical investigation with different electrode arrangements demonstrated the key role of nanocomposite formation to achieve high currents. In particular, an increased TiOxNy surface content promoted a higher H2O2 selectivity, and fluorinated nanocarbons imparted good stability to the electrodes due to their superhydrophobic properties.

4.
Adv Sci (Weinh) ; 10(26): e2303781, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37409444

ABSTRACT

The manipulation of carbon nitride (CN) structures is one main avenue to enhance the activity of CN-based photocatalysts. Increasing the efficiency of photocatalytic heterogeneous materials is a critical step toward the realistic implementation of sustainable schemes for organic synthesis. However, limited knowledge of the structure/activity relationship in relation to subtle structural variations prevents a fully rational design of new photocatalytic materials, limiting practical applications. Here, the CN structure is engineered by means of a microwave treatment, and the structure of the material is shaped around its suitable functionality for Ni dual photocatalysis, with a resulting boosting of the reaction efficiency toward many CX (X = N, S, O) couplings. The combination of advanced characterization techniques and first-principle simulations reveals that this enhanced reactivity is due to the formation of carbon vacancies that evolve into triazole and imine N species able to suitably bind Ni complexes and harness highly efficient dual catalysis. The cost-effective microwave treatment proposed here appears as a versatile and sustainable approach to the design of CN-based photocatalysts for a wide range of industrially relevant organic synthetic reactions.

5.
ChemSusChem ; 16(21): e202300831, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37486452

ABSTRACT

2H-MoS2 is an appealing semiconductor because of its Earth-abundant nature, cheapness, and low toxicity. This material has shown promising catalytic activity for various energy-related processes, but its use in catalysis for C-C bond forming reactions towards useful organic compounds is still largely unexplored. The lack of examples in organic synthesis is mainly due to the intrinsic difficulties of using bulk 2H-MoS2 (e. g., low surface area), which implies the reliance on high catalytic loadings for obtaining acceptable yields. This makes the optimization process more expensive and tedious. Here, we report the development of a 2H-MoS2 -mediated synthesis of valuable bis(indolyl)methane derivatives, using indoles and benzaldehydes as starting materials. Exploiting the Design of Experiments (DoE) method, we identified the critical parameters affecting the catalytic performance of commercial 2H-MoS2 powder and optimized the reaction conditions. Lastly, we demonstrated that the catalytic system has versatility and good tolerance towards functional group variations of the reagents.

6.
Chemistry ; 29(55): e202301718, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37439718

ABSTRACT

The use of graphitic carbon nitride (g-CN) for the photocatalytic radical formylation of anilines, which represents a more sustainable and attractive alternative to the currently used approaches, is reported herein. Our operationally simple method occurs under mild conditions, employing air as an oxidant. In particular, the chemistry is driven by the ability of g-CN to reach an electronically excited state upon visible-light absorption, which has a suitable potential energy to trigger the formation of reactive α-amino radical species from anilines. Mechanistic investigations also proved the key role of the g-CN to form reactive superoxide radicals from O2 via single electron transfer. Importantly, this photocatalytic transformation provides a variety of functionalized formamides (15 examples, up to 89 % yield).

7.
Chem Mater ; 35(6): 2612-2623, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37008408

ABSTRACT

A versatile approach to the production of cluster- and single atom-based thin-film electrode composites is presented. The developed TiO x N y -Ir catalyst was prepared from sputtered Ti-Ir alloy constituted of 0.8 ± 0.2 at % Ir in α-Ti solid solution. The Ti-Ir solid solution on the Ti metal foil substrate was anodically oxidized to form amorphous TiO2-Ir and later subjected to heat treatment in air and in ammonia to prepare the final catalyst. Detailed morphological, structural, compositional, and electrochemical characterization revealed a nanoporous film with Ir single atoms and clusters that are present throughout the entire film thickness and concentrated at the Ti/TiO x N y -Ir interface as a result of the anodic oxidation mechanism. The developed TiO x N y -Ir catalyst exhibits very high oxygen evolution reaction activity in 0.1 M HClO4, reaching 1460 A g-1 Ir at 1.6 V vs reference hydrogen electrode. The new preparation concept of single atom- and cluster-based thin-film catalysts has wide potential applications in electrocatalysis and beyond. In the present paper, a detailed description of the new and unique method and a high-performance thin film catalyst are provided along with directions for the future development of high-performance cluster and single-atom catalysts prepared from solid solutions.

8.
ACS Appl Energy Mater ; 5(11): 13356-13366, 2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36465260

ABSTRACT

The integration of graphene oxide (GO) into nanostructured Bi2O3 electrocatalysts for CO2 reduction (CO2RR) brings up remarkable improvements in terms of performance toward formic acid (HCOOH) production. The GO scaffold is able to facilitate electron transfers toward the active Bi2O3 phase, amending for the high metal oxide (MO) intrinsic electric resistance, resulting in activation of the CO2 with smaller overpotential. Herein, the structure of the GO-MO nanocomposite is tailored according to two synthetic protocols, giving rise to two different nanostructures, one featuring reduced GO (rGO) supporting Bi@Bi2O3 core-shell nanoparticles (NP) and the other GO supporting fully oxidized Bi2O3 NP. The two structures differentiate in terms of electrocatalytic behavior, suggesting the importance of constructing a suitable interface between the nanocarbon and the MO, as well as between MO and metal.

9.
Angew Chem Int Ed Engl ; 61(43): e202210640, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36074040

ABSTRACT

Carbon nitride (CN) is a heterogeneous photocatalyst that combines good structural properties and a broad scope. The photocatalytic efficiency of CN is associated with the presence of defective and radical species. An accurate description of defective states-both at a local and extended level-is key to develop a thorough mechanistic understanding of the photophysics of CN. In turn, this will maximise the generation and usage of photogenerated charge carriers and minimise wasteful charge recombination. Here the influence of morphology and light-excitation on the number and chemical nature of radical defects is assessed. By exploiting the magnetic dipole-dipole coupling, the spatial distribution of native radicals in CN is derived with high precision. From the analysis an average distance in the range 1.99-2.34 nm is determined, which corresponds to pairs of radicals located approximately four tri-s-triazine units apart.

10.
Chem Sci ; 13(34): 9927-9939, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36128229

ABSTRACT

Graphitic carbon nitride (gCN) is an important heterogeneous metal-free catalytic material. Thermally induced post-synthetic modifications, such as amorphization and/or reduction, were recently used to enhance the photocatalytic response of these materials for certain classes of organic transformations, with structural defects possibly playing an important role. The knowledge of how these surface modifications modulate the photocatalytic response of gCN is therefore not only interesting from a fundamental point of view, but also necessary for the development and/or tuning of metal-free gCN systems with superior photo-catalytic properties. Herein, employing density functional theory calculations and combining both the periodic and molecular approaches, in conjunction with experimental EPR measurements, we demonstrate that different structural defects on the gCN surface generate distinctive radical defect states localized within the electronic bandgap, with only those correlated with amorphous and reduced gCN structures being photo-active. To this end, we (i) model defective gCN surfaces containing radical defect states; (ii) assess the interactions of these defects with the radical precursors involved in the photo-driven alkylation of electron-rich aromatic compounds (namely perfluoroalkyl iodides); and (iii) describe the photo-chemical processes triggering the initial step of that reaction at the gCN surface. We provide a coherent structure/photo-catalytic property relationship on defective gCN surfaces, elaborating how only specific defect types act as binding sites for the perfluoroalkyl iodide reagent and can favor a photo-induced charge transfer from the gCN surface to the molecule, thus triggering the perfluoroalkylation reaction.

11.
ChemSusChem ; 15(18): e202201094, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-35789214

ABSTRACT

Recently, the field of dual photocatalysis has grown rapidly, to become one of the most powerful tools for the functionalization of organic molecules under mild conditions. In particular, the merging of Earth-abundant nickel-based catalytic systems with visible-light-activated photoredox catalysts has allowed the development of a number of unique green synthetic approaches. This goes in the direction of ensuring an effective and sustainable chemical production, while safeguarding human health and environment. Importantly, this relatively new branch of catalysis has inspired an interdisciplinary stream of research that spans from inorganic and organic chemistry to materials science, thus establishing itself as one dominant trend in modern organic synthesis. This Review aims at illustrating the milestones on the timeline evolution of the photocatalytic systems used, with a critical analysis toward novel applications based on the use of photoactive two-dimensional carbon-based nanostructures. Lastly, forward-looking opportunities within this intriguing research field are discussed.


Subject(s)
Nickel , Photochemical Processes , Carbon , Catalysis , Humans , Materials Science , Nickel/chemistry , Oxidation-Reduction
12.
Chembiochem ; 23(2): e202100518, 2022 01 19.
Article in English | MEDLINE | ID: mdl-34784433

ABSTRACT

Unprotected dipeptides are attractive building blocks for environmentally friendly hydrogel biomaterials by virtue of their low-cost and ease of preparation. This work investigates the self-assembling behaviour of the distinct stereoisomers of Ile-Phe and Phe-Ile in phosphate buffered saline (PBS) to form hydrogels, using transmission electron microscopy (TEM), attenuated total reflectance infrared spectroscopy (ATR-IR), circular dichroism (CD), and oscillatory rheometry. Each peptide purity and identity was also confirmed by 1 H- and 13 C-NMR spectroscopy and HPLC-MS. Finally, single-crystal XRD data allowed the key interactions responsible for the supramolecular packing into amphipathic layers or water-channels to be revealed. The presence of the latter in the crystal structure is a distinctive feature of the only gelator of this work that self-organizes into stable hydrogels, with fast kinetics and the highest elastic modulus amongst its structural isomers and stereoisomers.


Subject(s)
Dipeptides/chemistry , Hydrogels/chemistry , Water/chemistry , Stereoisomerism
13.
Nanomaterials (Basel) ; 11(9)2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34578575

ABSTRACT

Ceria (CeO2) nanostructures are well-known in catalysis for energy and environmental preservation and remediation. Recently, they have also been gaining momentum for biological applications in virtue of their unique redox properties that make them antioxidant or pro-oxidant, depending on the experimental conditions and ceria nanomorphology. In particular, interest has grown in the use of biotemplates to exert control over ceria morphology and reactivity. However, only a handful of reports exist on the use of specific biomolecules to template ceria nucleation and growth into defined nanostructures. This review focusses on the latest advancements in the area of biomolecular templates for ceria nanostructures and existing opportunities for their (bio)applications.

16.
ACS Nano ; 15(3): 3621-3630, 2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33715354

ABSTRACT

Two-dimensional (2D) nanostructures are a frontier in materials chemistry as a result of their extraordinary properties. Metal-free 2D nanomaterials possess extra appeal due to their improved cost-effectiveness and lower toxicity with respect to many inorganic structures. The outstanding electronic characteristics of some metal-free 2D semiconductors have projected them into the world of organic synthesis, where they can function as high-performance photocatalysts to drive the sustainable synthesis of high-value organic molecules. Recent reports on this topic have inspired a stream of research and opened up a theme that we believe will become one of the most dominant trends in the forthcoming years.

17.
ACS Nano ; 15(2): 3015-3025, 2021 02 23.
Article in English | MEDLINE | ID: mdl-33576622

ABSTRACT

Self-assembling peptides are being applied both in the biomedical area and as building blocks in nanotechnology. Their applications are closely linked to their modes of self-assembly, which determine the functional nanostructures that they form. This work brings together two structural elements that direct nanoscale self-association in divergent directions: proline as a ß-breaker and the ß-structure-associated diphenylalanine motif, into a single tripeptide sequence. Amino acid chirality was found to resolve the tension inherent to these conflicting self-assembly instructions. Stereoconfiguration determined the ability of each of the eight possible Pro-Phe-Phe stereoisomers to self-associate into diverse nanostructures, including nanoparticles, nanotapes, or fibrils, which yielded hydrogels with gel-to-sol transition at a physiologically relevant temperature. Three single-crystal structures and all-atom molecular dynamics simulations elucidated the ability of each peptide to establish key interactions to form long-range assemblies (i,e., stacks leading to gelling fibrils), medium-range assemblies (i.e., stacks yielding nanotapes), or short-range assemblies (i.e., dimers or trimers that further associated into nanoparticles). Importantly, diphenylalanine is known to serve as a binding site for pathological amyloids, potentially allowing these heterochiral systems to influence the fibrillization of other biologically relevant peptides. To probe this hypothesis, all eight Pro-Phe-Phe stereoisomers were tested in vitro on the Alzheimer's disease-associated Aß(1-42) peptide. Indeed, one nonfibril-forming stereoisomer effectively inhibited Aß fibrillization through multivalent binding between diphenylalanine motifs. This work thus defined heterochirality as a useful feature to strategically develop future therapeutics to interfere with pathological processes, with the additional value of resistance to protease-mediated degradation and biocompatibility.


Subject(s)
Nanostructures , Peptides , Amyloid , Hydrogels , Nanotechnology
18.
Molecules ; 25(23)2020 Nov 29.
Article in English | MEDLINE | ID: mdl-33260409

ABSTRACT

Nanostructured gels have emerged as an attractive functional material to innovate the field of energy, with applications ranging from extraction and purification to nanocatalysts with unprecedented performance. In this review we discuss the various classes of nanostructured gels and the most recent advancements in the field with a perspective on future directions of this challenging area.


Subject(s)
Gels/chemistry , Nanostructures/chemistry , Catalysis , Environment , Gels/chemical synthesis , Physical Phenomena , Polymers/chemical synthesis , Polymers/chemistry , Recycling/methods , Water Purification/methods
19.
Sci Adv ; 6(46)2020 Nov.
Article in English | MEDLINE | ID: mdl-33177092

ABSTRACT

The favorable exploitation of carbon nitride (CN) materials in photocatalysis for organic synthesis requires the appropriate fine-tuning of the CN structure. Here, we present a deep investigation of the structure/activity relationship of CN in the photocatalytic perfluoroalkylation of organic compounds. Four types of CN bearing subtle structural differences were studied via conventional characterization techniques and innovative nuclear magnetic resonance (NMR) experiments, correlating the different structures with the fundamental mechanistic nexus and especially highlighting the importance of the halogen bond strength between the reagent and the catalyst surface. The optimum catalyst exhibited an excellent performance, with a very wide reaction scope, and could prominently trigger the model reaction using natural sunlight. The work lays a platform for establishing a new approach in the development of heterogeneous photocatalysts for organic synthesis related to medical, agricultural, and material chemistry.

20.
Chem Commun (Camb) ; 56(20): 3015-3018, 2020 Mar 10.
Article in English | MEDLINE | ID: mdl-32048648

ABSTRACT

The uncapped tripeptide DPhe-Phe-Leu acts as self-assembly template to yield supramolecular hydrogel biomaterials. As an example, self-assembling DPhe-Phe-Leu-Asp-Val contains the LDV bioadhesive motif for ß1 integrin activation. Hydrogels made of the two peptides successfully mimic fibronectin of the extracellular matrix and lead to high cell viability, adhesion, and spreading.


Subject(s)
Hydrogels/chemistry , Optical Imaging , Peptides/chemistry , Cell Adhesion , Cell Survival , Fibroblasts/chemistry , Humans , Macromolecular Substances/chemistry , Molecular Conformation , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...