Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Vaccines (Basel) ; 12(4)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38675782

ABSTRACT

Booster vaccines are a strategy to mitigate the conditions in the health, social, and economic fields that the COVID-19 pandemic has brought. A series of adverse effects have been observed since the first vaccination. The present investigation aims to describe the short-term adverse effects of the fourth dose against COVID-19 in adults older than 40 from a region of Peru. The study population was over 40 years of age at the COVID-19 vaccination center in Trujillo, Peru. A 21-day follow-up was conducted from vaccination with the fourth dose, considering sex, age, body mass index, comorbidities, history of COVID-19 infection, vaccination schedule, and simultaneous vaccination against influenza as variables of interest. Multinomial logistic regression with robust variance was used to estimate the risk ratio (RR). In total, 411 people were recruited, and it was found that 86.9% of the participants presented adverse effects after injection with the fourth dose of the vaccine against COVID-19. Pain at the injection site was the most reported symptom after 3 days. Assessment of adverse effects after 3 days found that age ≥ 60 years was associated with a lower likelihood of adverse effects compared to those younger than 60 years (RRc: 0.32; 95% CI: 0.0.18-0.59), males compared to females were associated with a lower likelihood of adverse effects (RRc: 0.54; 95% CI 0.30-0.98), being overweight (RRc: 2.34; 95% CI: 1.12-4.89), and last vaccine with Pfizer-BioN-Tech (RRc: 0.42; 95% CI: 0.18-0.96). Associated adverse effects are mild to moderate. Injection site pain and general malaise are the most frequent adverse effects.

2.
PLoS One ; 19(3): e0298400, 2024.
Article in English | MEDLINE | ID: mdl-38478489

ABSTRACT

Facultative parasites can alternate between a free-living and a parasitic existence to complete their life cycle. Yet, it remains uncertain which lifestyle they prefer. The optimal foraging theory suggests that food preferences align with fitness benefits. To test this hypothesis, we investigated the facultative parasite nematode Rhabditis regina, assessing its host preference and the associated benefits. Two experiments were conducted using wild nematode populations collected from Phyllophaga polyphylla, their natural host. In the first experiment, we used a behavioral arena to assess host preference between the natural host and two experimental hosts: Spodoptera frugiperda which is an alternative host and dead Tenebrio molitor, which simulates a saprophytic environment. In the second experiment, we subjected wild nematodes to "experimental evolution" lasting 50 generations in S. frugiperda and 53 generations in T. molitor carcass. We then compared life history traits (the size, survival, number of larvae, and glycogen and triglycerides as energy reserves) of dauer larvae with those nematodes from P. polyphylla (control group). We found a significant preference for P. polyphylla, which correlated with higher values in the nematode's life history traits. In contrast, the preference for S. frugiperda and the saprophytic environment was lower, resulting in less efficient life history traits. These findings align with the optimal foraging theory, as the nematode's parasitic preferences are in line with maximizing fitness. This also indicates that R. regina exhibits specificity to P. polyphylla and is better adapted to a parasitic lifestyle than a free-living one, suggesting an evolutionary pathway towards parasitism.


Subject(s)
Coleoptera , Nematoda , Parasites , Rhabditoidea , Animals , Larva/parasitology , Host-Parasite Interactions
3.
Acta Parasitol ; 68(2): 293-303, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36806112

ABSTRACT

PURPOSE: The parasites' virulence is labile after jumping to a new host species, and it might derivate in gaining virulence against a new host as a side effect of living in a non-host environment (coincidental evolution of virulence hypothesis). METHODS: To test this hypothesis, we monitored the experimental evolution of the Rhabditis regina nematode for over 290 generations (4 years) in three environments (strains): (1) the natural host, Phyllophaga polyphylla, (2) an alternate host, Tenebrio molitor, and (3) saprophytic medium (beef; the food that may provide evidence for the coincidental evolution of virulence). Each strain was exposed to P. polyphylla, T. molitor, or Galleria mellonella. We compared the host survival and immune response (proPO, PO, and lytic activity) of infected versus uninfected hosts. RESULTS: The saprophytic nematodes gained virulence only against G. mellonella. However, the P. polyphylla strain was more effective in killing P. polyphylla than T. molitor, and the T. molitor strain was more effective against T. molitor than P. polyphylla. Additionally, one dauer larva was sufficient to kill the hosts. Finally, the immune response did not differ between the challenged and control groups. CONCLUSION: The coincidental evolution of virulence partially explains our results, but they might also support the short-sighted hypothesis. Additionally, we found evidence for immunomodulation because nematodes passed unnoticed to the immune response. It is crucial to analyze the virulence of entomopathogens from the point of view of the evolution of virulence to be aware of potential scenarios that might limit biological control.


Subject(s)
Moths , Nematoda , Tenebrio , Animals , Cattle , Virulence , Nematoda/physiology , Larva
5.
J Med Chem ; 63(11): 6179-6202, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32390431

ABSTRACT

The global impact of malaria remains staggering despite extensive efforts to eradicate the disease. With increasing drug resistance and the absence of a clinically available vaccine, there is an urgent need for novel, affordable, and safe drugs for prevention and treatment of malaria. Previously, we described a novel antimalarial acridone chemotype that is potent against both blood-stage and liver-stage malaria parasites. Here, we describe an optimization process that has produced a second-generation acridone series with significant improvements in efficacy, metabolic stability, pharmacokinetics, and safety profiles. These findings highlight the therapeutic potential of dual-stage targeting acridones as novel drug candidates for further preclinical development.


Subject(s)
Acridones/chemistry , Antimalarials/chemistry , Acridones/pharmacokinetics , Acridones/pharmacology , Acridones/therapeutic use , Administration, Oral , Animals , Antimalarials/pharmacokinetics , Antimalarials/pharmacology , Antimalarials/therapeutic use , Cell Survival/drug effects , Disease Models, Animal , Female , Half-Life , Hep G2 Cells , Humans , Life Cycle Stages/drug effects , Malaria/drug therapy , Malaria/pathology , Male , Mice , Mice, Inbred C57BL , Plasmodium falciparum/drug effects , Plasmodium falciparum/isolation & purification , Structure-Activity Relationship
6.
J Med Chem ; 62(7): 3475-3502, 2019 04 11.
Article in English | MEDLINE | ID: mdl-30852885

ABSTRACT

Malaria remains one of the deadliest diseases in the world today. Novel chemoprophylactic and chemotherapeutic antimalarials are needed to support the renewed eradication agenda. We have discovered a novel antimalarial acridone chemotype with dual-stage activity against both liver-stage and blood-stage malaria. Several lead compounds generated from structural optimization of a large library of novel acridones exhibit efficacy in the following systems: (1) picomolar inhibition of in vitro Plasmodium falciparum blood-stage growth against multidrug-resistant parasites; (2) curative efficacy after oral administration in an erythrocytic Plasmodium yoelii murine malaria model; (3) prevention of in vitro Plasmodium berghei sporozoite-induced development in human hepatocytes; and (4) protection of in vivo P. berghei sporozoite-induced infection in mice. This study offers the first account of liver-stage antimalarial activity in an acridone chemotype. Details of the design, chemistry, structure-activity relationships, safety, metabolic/pharmacokinetic studies, and mechanistic investigation are presented herein.


Subject(s)
Acridones/chemistry , Acridones/pharmacology , Antimalarials/chemistry , Antimalarials/pharmacology , Drug Discovery/methods , Acridones/therapeutic use , Animals , Antimalarials/therapeutic use , Disease Models, Animal , Hep G2 Cells , Humans , Malaria/drug therapy , Mice , Plasmodium/classification , Plasmodium/drug effects , Species Specificity , Structure-Activity Relationship
7.
J Food Sci Technol ; 55(12): 4901-4908, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30482985

ABSTRACT

The purpose of this study was to determine the influence of ultrasound intensity, pulse and temperature on extraction of caffeine, from Arabica coffee beans using water as solvent, and ultrasound frequency of 24 kHz. A central composite design was used, using ultrasound intensity (31.5-105 W cm-2), pulse (0.30-1) and extraction temperature of the extraction (30-60 °C) as independent factor. The caffeine recovery and caffeine diffusion coefficient were response variables. The ultrasound intensity and extraction temperature significantly influenced the caffeine recovery rate and the diffusion coefficient of caffeine. Activation energy of 48.95 kJ mol-1 for the caffeine diffusion coefficient in ultrasound assisted extraction was observed. The best results were obtained at 68.25-105 W cm-2 ultrasound intensity and 60 °C temperature, corresponding to caffeine recovery of 58.4-69.4% and diffusion coefficient of 8.92-10.57 × 10-11 m2 s-1. The pulse effect was not significant in the range of the studied variables.

8.
Malar J ; 13: 409, 2014 Oct 17.
Article in English | MEDLINE | ID: mdl-25326032

ABSTRACT

BACKGROUND: Mirincamycin is a close analog of the drug clindamycin used to treat Plasmodium falciparum blood stages. The clinical need to treat Plasmodium vivax dormant liver stages and prevent relapse with a drug other than primaquine led to the evaluation of mirinicamycin against liver stages in animals. METHODS: cis-mirinicamycin and trans-mirinicamycin were evaluated as prophylaxis against early liver stages of Plasmodium berghei in mice and as antirelapse hypnozoiticides against Plasmodium cynomolgi in the Rhesus monkey (Macaca mulatta). RESULTS: Mirincamycin was very effective against early liver stages of P. berghei in mice: both cis and trans enantiomers were 90-100% causally prophylactic at 3.3 mg/kg/day for 3 days orally. Both cis and trans mirincamycin, however, failed to kill dormant liver stages (hypnozoites) in the P. cynomolgi infected Rhesus monkey, the only preclinical hypnozoite model. Mirincamycin enantiomers at 80 mg/kg/day for 7 days orally, a dose that generated exposures comparable to that seen clinically, did not prevent relapse in any of four monkeys. CONCLUSIONS: Although efficacy against early liver stages of P. berghei was thought to correlate with anti-hypnozoite activity in primates, for mirincamycin, at least, there was no correlation. The negative P. cynomolgi hypnozoite data from Rhesus monkeys indicates that mirincamycin is unlikely to have potential as a clinical anti-relapse agent.


Subject(s)
Antimalarials/therapeutic use , Clindamycin/analogs & derivatives , Malaria/drug therapy , Plasmodium cynomolgi , Animals , Antibiotic Prophylaxis , Antimalarials/administration & dosage , Antimalarials/pharmacokinetics , Clindamycin/administration & dosage , Clindamycin/pharmacokinetics , Clindamycin/therapeutic use , Disease Models, Animal , Female , Macaca mulatta , Malaria/parasitology , Mice , Mice, Inbred ICR , Parasitemia , Plasmodium vivax , Recurrence
9.
J Pharmacol Toxicol Methods ; 70(2): 188-94, 2014.
Article in English | MEDLINE | ID: mdl-25150934

ABSTRACT

INTRODUCTION: Malaria is a major health concern and affects over 300million people a year. Accordingly, there is an urgent need for new efficacious anti-malarial drugs. A major challenge in developing new anti-malarial drugs is to design active molecules that have preferable drug-like characteristics. These "drug-like" characteristics include physiochemical properties that affect drug absorption, distribution, metabolism, and excretion (ADME). Compounds with poor ADME profiles will likely fail in vivo due to poor pharmacokinetics and/or other drug delivery related issues. There have been numerous assays developed in order to pre-screen compounds that would likely fail in further development due to poor absorption properties including PAMPA, Caco-2, and MDCK permeability assays. METHODS: The use of cell-based permeability assays such as Caco-2 and MDCK serve as surrogate indicators of drug absorption and transport, with the two approaches often used interchangeably. We sought to evaluate both approaches in support of anti-malarial drug development. Accordingly, a comparison of both assays was conducted utilizing apparent permeability coefficient (Papp) values determined from liquid chromatography/tandem mass spectrometry (LC-MS) analyses. RESULTS: Both Caco-2 and MDCK permeability assays produced similar Papp results for potential anti-malarial compounds with low and medium permeability. Differences were observed for compounds with high permeability and compounds that were P-gp substrates. Additionally, the utility of MDCK-MDR1 permeability measurements was demonstrated in probing the role of P-glycoprotein transport in Primaquine-Chloroquine drug-drug interactions in comparison with in vivo pharmacokinetic changes. DISCUSSION: This study provides an in-depth comparison of the Caco-2 and MDCK-MDR1 cell based permeability assays and illustrates the utility of cell-based permeability assays in anti-malarial drug screening/development in regard to understanding transporter mediated changes in drug absorption/distribution.


Subject(s)
Absorption, Physiological , Antimalarials/metabolism , Antimalarials/pharmacokinetics , Drug Evaluation, Preclinical/methods , Absorption, Physiological/drug effects , Animals , Antimalarials/chemistry , Caco-2 Cells , Cells, Cultured , Chromatography, Liquid , Dogs , Drug Delivery Systems , Drug Design , Humans , Madin Darby Canine Kidney Cells , Male , Mice , Mice, Inbred C3H , Permeability/drug effects , Tandem Mass Spectrometry
10.
Malar J ; 13: 281, 2014 Jul 22.
Article in English | MEDLINE | ID: mdl-25047305

ABSTRACT

BACKGROUND: Alternatives to treatment for malaria treatment of travellers are needed in the USA and in Europe for travellers who return with severe malaria infections. The objective of this study is to show the pharmacokinetic (PK) profile of intravenous artesunate (AS), which was manufactured under good manufacturing practice (GMP) conditions, in adults with uncomplicated falciparum malaria in Kenya. METHODS: The PK parameters of intravenous AS manufactured under current cGMP were evaluated after a single dose of drug at 2.4 mg/kg infused over 2 min in 28 adults with uncomplicated Plasmodium falciparum malaria. Plasma concentrations of AS and dihydroartemisinin (DHA) were measured using a validated liquid chromatography-mass spectrometry (LC-MS/MS) methodology. Pharmacokinetic data were analysed with a compartmental analysis for AS and DHA. RESULTS: The results suggest there were no drug-related adverse events in any of the patients. After intravenous infusion, the concentration of the parent drug rapidly declined, and the AS was converted to DHA. AS and DHA showed mean elimination half-lives of 0.17 hours and 1.30 hours, respectively. The high mean peak concentration (Cmax) of AS was shown to be 28,558 ng/mL while the Cmax of DHA was determined to be 2,932 ng/mL. Significant variability was noted in the PK profiles of the 28 patients tested. For example, Cmax values of AS were calculated to range from 3,362 to 55,873 ng/mL, and the Cmax value of DHA was noted to vary from 1,493 to 5,569 ng/mL. The mean area under the curve (AUC) of AS was shown to be approximately half that of DHA (1,878 ng · h/mL vs 3,543 ng · h/mL). The DHA/AS ratio observed was 1.94 during the one-day single treatment, and the AUC and half- life measured for DHA were significantly larger and longer than for AS. CONCLUSIONS: Intravenous AS can provide much higher peak concentrations of AS when compared to concentrations achieved with oral therapy; this may be crucial for the rapid elimination of parasites in patients with severe malaria. Given the much longer half-life of DHA compared to the short half-life of AS, DHA also plays a significant role in treatment of severe malaria.


Subject(s)
Antimalarials/pharmacokinetics , Artemisinins/pharmacokinetics , Malaria, Falciparum/drug therapy , Activation, Metabolic , Adult , Aged , Antimalarials/administration & dosage , Antimalarials/adverse effects , Antimalarials/blood , Antimalarials/supply & distribution , Antimalarials/therapeutic use , Artemisinins/administration & dosage , Artemisinins/adverse effects , Artemisinins/blood , Artemisinins/supply & distribution , Artemisinins/therapeutic use , Artesunate , Atovaquone/therapeutic use , Chromatography, Liquid , Drug Combinations , Drug Compounding/standards , Drug Monitoring , Female , Half-Life , Humans , Infusions, Intravenous , Kenya , Malaria, Falciparum/blood , Male , Mass Spectrometry , Middle Aged , Proguanil/therapeutic use , Reticulocytes/drug effects , Young Adult
11.
Antimicrob Agents Chemother ; 58(8): 4737-44, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24913163

ABSTRACT

Hematotoxicity in individuals genetically deficient in glucose-6-phosphate dehydrogenase (G6PD) activity is the major limitation of primaquine (PQ), the only antimalarial drug in clinical use for treatment of relapsing Plasmodium vivax malaria. PQ is currently clinically used in its racemic form. A scalable procedure was developed to resolve racemic PQ, thus providing pure enantiomers for the first time for detailed preclinical evaluation and potentially for clinical use. These enantiomers were compared for antiparasitic activity using several mouse models and also for general and hematological toxicities in mice and dogs. (+)-(S)-PQ showed better suppressive and causal prophylactic activity than (-)-(R)-PQ in mice infected with Plasmodium berghei. Similarly, (+)-(S)-PQ was a more potent suppressive agent than (-)-(R)-PQ in a mouse model of Pneumocystis carinii pneumonia. However, at higher doses, (+)-(S)-PQ also showed more systemic toxicity for mice. In beagle dogs, (+)-(S)-PQ caused more methemoglobinemia and was toxic at 5 mg/kg of body weight/day given orally for 3 days, while (-)-(R)-PQ was well tolerated. In a novel mouse model of hemolytic anemia associated with human G6PD deficiency, it was also demonstrated that (-)-(R)-PQ was less hemolytic than (+)-(S)-PQ for the G6PD-deficient human red cells engrafted in the NOD-SCID mice. All these data suggest that while (+)-(S)-PQ shows greater potency in terms of antiparasitic efficacy in rodents, it is also more hematotoxic than (-)-(R)-PQ in mice and dogs. Activity and toxicity differences of PQ enantiomers in different species can be attributed to their different pharmacokinetic and metabolic profiles. Taken together, these studies suggest that (-)-(R)-PQ may have a better safety margin than the racemate in human.


Subject(s)
Antimalarials/pharmacokinetics , Hemolysis/drug effects , Malaria/drug therapy , Pneumonia, Pneumocystis/drug therapy , Primaquine/pharmacokinetics , Animals , Antimalarials/isolation & purification , Antimalarials/toxicity , Dogs , Erythrocyte Transfusion , Erythrocytes/drug effects , Erythrocytes/parasitology , Female , Glucosephosphate Dehydrogenase Deficiency/metabolism , Humans , Lethal Dose 50 , Malaria/parasitology , Mice , Mice, Inbred BALB C , Mice, Inbred ICR , Mice, Inbred NOD , Mice, SCID , Plasmodium berghei/drug effects , Plasmodium berghei/physiology , Pneumocystis carinii/drug effects , Pneumocystis carinii/physiology , Pneumonia, Pneumocystis/microbiology , Primaquine/isolation & purification , Primaquine/toxicity , Stereoisomerism , Transplantation, Heterologous
12.
Eur J Drug Metab Pharmacokinet ; 39(4): 231-6, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24705994

ABSTRACT

The use of mefloquine (MQ) for antimalarial treatment and prophylaxis has diminished largely in response to concerns about its neurologic side effects. An analog campaign designed to maintain the efficacy of MQ while minimizing blood-brain barrier (BBB) penetration has resulted in the synthesis of a prodrug with comparable-to-superior in vivo efficacy versus mefloquine in a P. berghei mouse model while exhibiting a sixfold reduction in CNS drug levels. The prodrug, WR319670, performed poorly compared to MQ in in vitro efficacy assays, but had promising in vitro permeability in an MDCK-MDR1 cell line BBB permeability screen. Its metabolite, WR308245, exhibited high predicted BBB penetration with excellent in vitro efficacy. Both WR319670 and WR308245 cured 5/5 animals in separate in vivo efficacy studies. The in vivo efficacy of WR319670 was thought to be due to the formation of a more active metabolite, specifically WR308245. This was supported by pharmacokinetics studies in non-infected mice, which showed that both IV and oral administration of WR319670 produced essentially identical levels of WR319670 and WR308245 in both plasma and brain samples at all time points. In these studies, the levels of WR308245 in the brain were 1/4 and 1/6 that of MQ in similar IV and oral studies, respectively. These data show that the use of WR319670 as an antimalarial prodrug was able to maintain efficacy in in vivo efficacy screens, while significantly lowering overall penetration of drug and metabolites across the BBB.


Subject(s)
Antimalarials/pharmacokinetics , Blood-Brain Barrier , Mefloquine/analogs & derivatives , Prodrugs/pharmacokinetics , Animals , Antimalarials/pharmacology , Male , Mefloquine/pharmacokinetics , Mefloquine/pharmacology , Mice , Mice, Inbred ICR , Prodrugs/pharmacology
13.
Malar J ; 13: 141, 2014 Apr 14.
Article in English | MEDLINE | ID: mdl-24731238

ABSTRACT

BACKGROUND: As anti-malarial drug resistance escalates, new safe and effective medications are necessary to prevent and treat malaria infections. The US Army is developing tafenoquine (TQ), an analogue of primaquine (PQ), which is expected to be more effective in preventing malaria in deployed military personnel. METHODS: To compare the prophylactic efficacy of TQ and PQ, a transgenic Plasmodium berghei parasite expressing the bioluminescent reporter protein luciferase was utilized to visualize and quantify parasite development in C57BL/6 albino mice treated with PQ and TQ in single or multiple regimens using a real-time in vivo imaging system (IVIS). As an additional endpoint, blood stage parasitaemia was monitored by flow cytometry. Comparative pharmacokinetic (PK) and liver distribution studies of oral and intravenous PQ and TQ were also performed. RESULTS: Mice treated orally with three doses of TQ at 5 mg/kg three doses of PQ at 25 mg/kg demonstrated no bioluminescence liver signal and no blood stage parasitaemia was observed suggesting both drugs showed 100% causal activity at the doses tested. Single dose oral treatment with 5 mg TQ or 25 mg of PQ, however, yielded different results as only TQ treatment resulted in causal prophylaxis in P. berghei sporozoite-infected mice. TQ is highly effective for causal prophylaxis in mice at a minimal curative single oral dose of 5 mg/kg, which is a five-fold improvement in potency versus PQ. PK studies of the two drugs administered orally to mice showed that the absolute bioavailability of oral TQ was 3.5-fold higher than PQ, and the AUC of oral TQ was 94-fold higher than oral PQ. The elimination half-life of oral TQ in mice was 28 times longer than PQ, and the liver tissue distribution of TQ revealed an AUC that was 188-fold higher than PQ. CONCLUSIONS: The increased drug exposure levels and longer exposure time of oral TQ in the plasma and livers of mice highlight the lead quality attributes that explain the much improved efficacy of TQ when compared to PQ.


Subject(s)
Aminoquinolines/therapeutic use , Antimalarials/therapeutic use , Malaria/drug therapy , Plasmodium berghei/drug effects , Primaquine/therapeutic use , Aminoquinolines/blood , Aminoquinolines/pharmacokinetics , Animals , Antimalarials/blood , Antimalarials/pharmacokinetics , Area Under Curve , Flow Cytometry , Half-Life , Liver/parasitology , Malaria/parasitology , Male , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Plasmodium berghei/growth & development , Primaquine/blood , Primaquine/pharmacokinetics , Sporozoites/drug effects , Sporozoites/growth & development
14.
Malar J ; 13: 2, 2014 Jan 03.
Article in English | MEDLINE | ID: mdl-24386891

ABSTRACT

BACKGROUND: Tafenoquine (TQ) is an 8-aminoquinoline (8AQ) that has been tested in several Phase II and Phase III clinical studies and is currently in late stage development as an anti-malarial prophylactic agent. NPC-1161B is a promising 8AQ in late preclinical development. It has recently been reported that the 8AQ drug primaquine requires metabolic activation by CYP 2D6 for efficacy in humans and in mice, highlighting the importance of pharmacogenomics in the target population when administering primaquine. A logical follow-up study was to determine whether CYP 2D activation is required for other compounds in the 8AQ structural class. METHODS: In the present study, the anti-malarial activities of NPC-1161B and TQ were assessed against luciferase expressing Plasmodium berghei in CYP 2D knock-out mice in comparison with normal C57BL/6 mice (WT) and with humanized/CYP 2D6 knock-in mice by monitoring luminescence with an in vivo imaging system. These experiments were designed to determine the direct effects of CYP 2D metabolic activation on the anti-malarial efficacy of NPC-1161B and TQ. RESULTS: NPC-1161B and TQ exhibited no anti-malarial activity in CYP 2D knock-out mice when dosed at their ED100 values (1 mg/kg and 3 mg/kg, respectively) established in WT mice. TQ anti-malarial activity was partially restored in humanized/CYP 2D6 knock-in mice when tested at two times its ED100. CONCLUSIONS: The results reported here strongly suggest that metabolism of NPC-1161B and TQ by the CYP 2D enzyme class is essential for their anti-malarial activity. Furthermore, these results may provide a possible explanation for therapeutic failures for patients who do not respond to 8AQ treatment for relapsing malaria. Because CYP 2D6 is highly polymorphic, variable expression of this enzyme in humans represents a significant pharmacogenomic liability for 8AQs which require CYP 2D metabolic activation for efficacy, particularly for large-scale prophylaxis and eradication campaigns.


Subject(s)
Aminoquinolines/metabolism , Antimalarials/metabolism , Cytochrome P-450 CYP2D6/metabolism , Malaria/drug therapy , Plasmodium berghei/drug effects , Succinates/metabolism , Animals , Cytochrome P-450 CYP2D6/genetics , Dose-Response Relationship, Drug , Malaria/parasitology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
15.
Nanomedicine ; 10(1): 57-65, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23891618

ABSTRACT

Decoquinate has potent activity against both Plasmodium hepatic development and red cell replication when tested in vitro. Decoquinate, however, is practically insoluble in water. To achieve its maximal in vivo efficacy, we generated nanoparticle formulations of decoquinate with a mean particle size less than 400 nm. Three separate preparations at doses of decoquinate 0.5-5 mg/kg were examined in mice infected with Plasmodium berghei. Oral administration of nanoparticle decoquinate at a dose of 1.25 mg/kg effectively inhibited the liver-stage parasite growth and provided complete causal prophylactic protection. This efficacy is 15 fold greater than that observed for microparticle decoquinate, which requires minimal dose of 20 mg/kg for the same inhibitory effect. Further in vitro studies utilizing dose-response assays revealed that decoquinate nanoformulation was substantially more potent than decoquinate microsuspension in killing both liver and blood stage malarial parasites, proving its potential for therapeutic development. FROM THE CLINICAL EDITOR: In this study, a nanoparticle formulation of decoquinate is shown to have superior bioavailability and efficacy in a mouse model of malaria, paving the way to the development of novel, potentially less toxic and more effective therapeutics to combat a disease that still has an enormous impact on a global scale despite the available partially effective therapies.


Subject(s)
Antimalarials/administration & dosage , Decoquinate/administration & dosage , Malaria, Falciparum/drug therapy , Nanoparticles/administration & dosage , Administration, Oral , Animals , Antimalarials/chemistry , Decoquinate/chemistry , Humans , Liver/drug effects , Liver/parasitology , Malaria, Falciparum/parasitology , Mice , Nanoparticles/chemistry , Plasmodium berghei/drug effects
17.
J Neurotrauma ; 30(23): 1973-82, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-23822888

ABSTRACT

Acute seizures frequently occur following severe traumatic brain injury (TBI) and have been associated with poor patient prognosis. Silent or nonconvulsive seizures (NCS) manifest in the absence of motor convulsion, can only be detected via continuous electroencephalographic (EEG) recordings, and are often unidentified and untreated. Identification of effective anti-epileptic drugs (AED) against post-traumatic NCS remains crucial to improve neurological outcome. Here, we assessed the anti-seizure profile of ethosuximide (ETX, 12.5-187.5 mg/kg) and phenytoin (PHT, 5-30 mg/kg) in a spontaneously occurring NCS model associated with penetrating ballistic-like brain injury (PBBI). Rats were divided between two drug cohorts, PHT or ETX, and randomly assigned to one of four doses or vehicle within each cohort. Following PBBI, NCS were detected by continuous EEG monitoring for 72 h post-injury. Drug efficacy was evaluated on NCS parameters of incidence, frequency, episode duration, total duration, and onset latency. Both PHT and ETX attenuated NCS in a dose-dependent manner. In vehicle-treated animals, 69-73% experienced NCS (averaging 9-10 episodes/rat) with average onset of NCS occurring at 30 h post-injury. Compared with control treatment, the two highest PHT and ETX doses significantly reduced NCS incidence to 13-40%, reduced NCS frequency (1.8-6.2 episodes/rat), and delayed seizure onset: <20% of treated animals exhibited NCS within the first 48 h. NCS durations were also dose-dependently mitigated. For the first time, we demonstrate that ETX and PHT are effective against spontaneously occurring NCS following PBBI, and suggest that these AEDs may be effective at treating post-traumatic NCS.


Subject(s)
Anticonvulsants/therapeutic use , Brain Injuries/complications , Ethosuximide/therapeutic use , Phenytoin/therapeutic use , Seizures/drug therapy , Seizures/etiology , Animals , Anticonvulsants/pharmacokinetics , Brain/pathology , Brain Injuries/pathology , Dose-Response Relationship, Drug , Electroencephalography/drug effects , Ethosuximide/pharmacokinetics , Head Injuries, Penetrating/complications , Head Injuries, Penetrating/pathology , Male , Phenytoin/pharmacokinetics , Rats , Rats, Sprague-Dawley
18.
Malar Res Treat ; 2013: 769234, 2013.
Article in English | MEDLINE | ID: mdl-23766925

ABSTRACT

Decoquinate (DQ) is highly effective at killing malaria parasites in vitro; however, it is extremely insoluble in water. In this study, solid dispersion method was used for DQ formulation which created a suitable physical form of DQ in aqueous phase for particle manipulation. Among many polymers and surfactants tested, polyvinylpyrrolidone 10, a polymer, and L- α -phosphatidylcholine or polysorbate, two surfactants, were chosen as DQ formulation components. The formulation particles were reduced to a mean size between 200 to 400 nm, which was stable in aqueous medium for at least three weeks. Pharmacokinetic (PK) studies showed that compared to DQ microparticle suspension, a nanoparticle formulation orally dosed to mice showed a 14.47-fold increase in area under the curve (AUC) of DQ plasma concentration and a 4.53-fold increase in AUC of DQ liver distribution. WR 299666, a poorly water-soluble compound with antimalarial activity, was also tested and successfully made into nanoparticle formulation without undergoing solid dispersion procedure. We concluded that nanoparticles generated by using appropriate formulation components and sufficient particle size reduction significantly increased the bioavailability of DQ and could potentially turn this antimalarial agent to a therapeutic drug.

19.
Malar J ; 12: 214, 2013 Jun 21.
Article in English | MEDLINE | ID: mdl-23800033

ABSTRACT

BACKGROUND: The naturally occurring alkaloid drug, quinine is commonly used for the treatment of severe malaria. Despite centuries of use, its metabolism is still not fully understood, and may play a role in the haemolytic disorders associated with the drug. METHODS: Incubations of quinine with CYPs 1A2, 2C9, 2C19, 2D6, and 3A4 were conducted, and the metabolites were characterized by accurate mass UPLC-MS(E) analysis. Reactive oxygen species generation was also measured in human erythrocytes incubated in the presence of quinine with and without microsomes. RESULTS: The metabolites 3-hydroxyquinine, 2'-oxoquininone, and O-desmethylquinine were observed after incubation with CYPs 3A4 (3-hydroxyquinine and 2'-oxoquininone) and 2D6 (O-desmethylquinine). In addition, multiple hydroxylations were observed both on the quinoline core and the quinuclidine ring system. Of the five primary abundance CYPs tested, 3A4, 2D6, 2C9, and 2C19 all demonstrated activity toward quinine, while 1A2 did not. Further, quinine produced robust dose-dependent oxidative stress in human erythrocytes in the presence of microsomes. CONCLUSIONS: Taken in context, these data suggest a CYP-mediated link between quinine metabolism and the poorly understood haemolytic condition known as blackwater fever, often associated with quinine ingestion.


Subject(s)
Blackwater Fever/etiology , Cytochrome P-450 Enzyme System/metabolism , Malaria/complications , Malaria/drug therapy , Quinine/adverse effects , Quinine/metabolism , Chromatography, Liquid , Erythrocytes/drug effects , Humans , Mass Spectrometry , Microsomes/enzymology , Microsomes/metabolism , Reactive Oxygen Species/analysis
20.
Malar J ; 12: 212, 2013 Jun 20.
Article in English | MEDLINE | ID: mdl-23782898

ABSTRACT

BACKGROUND: The efficacy of the 8-aminoquinoline (8AQ) drug primaquine (PQ) has been historically linked to CYP-mediated metabolism. Although to date no clear evidence exists in the literature that unambiguously assigns the metabolic pathway or specific metabolites necessary for activity, recent literature suggests a role for CYP 2D6 in the generation of redox active metabolites. METHODS: In the present study, the specific CYP 2D6 inhibitor paroxetine was used to assess its effects on the production of specific phenolic metabolites thought to be involved in PQ efficacy. Further, PQ causal prophylactic (developing liver stage) efficacy against Plasmodium berghei in CYP 2D knockout mice was assessed in comparison with a normal C57 background and with humanized CYP 2D6 mice to determine the direct effects of CYP 2D6 metabolism on PQ activity. RESULTS: PQ exhibited no activity at 20 or 40 mg/kg in CYP 2D knockout mice, compared to 5/5 cures in normal mice at 20 mg/kg. The activity against developing liver stages was partially restored in humanized CYP 2D6 mice. CONCLUSIONS: These results unambiguously demonstrate that metabolism of PQ by CYP 2D6 is essential for anti-malarial causal prophylaxis efficacy.


Subject(s)
Antimalarials/metabolism , Cytochrome P-450 CYP2D6/genetics , Cytochrome P-450 CYP2D6/metabolism , Primaquine/metabolism , Animals , Antimalarials/chemistry , Antimalarials/pharmacokinetics , Antimalarials/therapeutic use , Hydroxylation , Malaria/drug therapy , Malaria/parasitology , Male , Mice , Mice, Inbred BALB C , Mice, Knockout , Plasmodium berghei , Primaquine/chemistry , Primaquine/pharmacokinetics , Primaquine/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...