Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 160
Filter
1.
Euro Surveill ; 29(29)2024 Jul.
Article in English | MEDLINE | ID: mdl-39027938

ABSTRACT

BackgroundThe COVID-19 pandemic and the emergence of Candida auris have changed the epidemiological landscape of candidaemia worldwide.AimWe compared the epidemiological trends of candidaemia in a Greek tertiary academic hospital before (2009-2018) and during the early COVID-19 (2020-2021) and late COVID-19/early post-pandemic (2022-2023) era.MethodsIncidence rates, species distribution, antifungal susceptibility profile and antifungal consumption were recorded, and one-way ANOVA or Fisher's exact test performed. Species were identified by MALDI-ToF MS, and in vitro susceptibility determined with CLSI M27-Ed4 for C. auris and the EUCAST-E.DEF 7.3.2 for other Candida spp.ResultsIn total, 370 candidaemia episodes were recorded during the COVID-19 pandemic. Infection incidence (2.0 episodes/10,000 hospital bed days before, 3.9 during the early and 5.1 during the late COVID-19 era, p < 0.0001), C. auris (0%, 9% and 33%, p < 0.0001) and fluconazole-resistant C. parapsilosis species complex (SC) (20%, 24% and 33%, p = 0.06) infections increased over time, with the latter not associated with increase in fluconazole/voriconazole consumption. A significant increase over time was observed in fluconazole-resistant isolates regardless of species (8%, 17% and 41%, p < 0.0001). Resistance to amphotericin B or echinocandins was not recorded, with the exception of a single pan-echinocandin-resistant C. auris strain.ConclusionCandidaemia incidence nearly tripled during the COVID-19 era, with C. auris among the major causative agents and increasing fluconazole resistance in C. parapsilosis SC. Almost half of Candida isolates were fluconazole-resistant, underscoring the need for increased awareness and strict implementation of infection control measures.


Subject(s)
Antifungal Agents , COVID-19 , Candidemia , Drug Resistance, Fungal , Fluconazole , Microbial Sensitivity Tests , SARS-CoV-2 , Tertiary Care Centers , Humans , Candidemia/epidemiology , Candidemia/drug therapy , Candidemia/microbiology , Greece/epidemiology , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , COVID-19/epidemiology , Tertiary Care Centers/statistics & numerical data , Fluconazole/pharmacology , Fluconazole/therapeutic use , Candida parapsilosis/drug effects , Candida parapsilosis/isolation & purification , Incidence , Candida auris/drug effects , Candida/drug effects , Candida/isolation & purification , Adult , Male , Female , Middle Aged , Aged , Pandemics , Candidiasis/epidemiology , Candidiasis/drug therapy , Candidiasis/microbiology
2.
Clin Microbiol Rev ; : e0004424, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39072666

ABSTRACT

SUMMARYDespite the early recognition of their therapeutic potential and the current escalation of multidrug-resistant (MDR) pathogens, the adoption of bacteriophages into mainstream clinical practice is hindered by unfamiliarity with their basic pharmacokinetic (PK) and pharmacodynamic (PD) properties, among others. Given the self-replicative nature of bacteriophages in the presence of host bacteria, the adsorption rate, and the clearance by the host's immunity, their PK/PD characteristics cannot be estimated by conventional approaches, and thus, the introduction of new considerations is required. Furthermore, the multitude of different bacteriophage types, preparations, and treatment schedules impedes drawing general conclusions on their in vivo PK/PD features. Additionally, the drawback of acquired bacteriophage resistance of MDR pathogens with clinical and environmental implications should be taken into consideration. Here, we provide an overview of the current state of the field of PK and PD of bacteriophage therapy with a focus on its application against MDR Gram-negative infections, highlighting the potential knowledge gaps and the challenges in translation from the bench to the bedside. After reviewing the in vitro PKs and PDs of bacteriophages against the four major MDR Gram-negative pathogens, Klebsiella pneumoniae, Acinetobacter baumannii complex, Pseudomonas aeruginosa, and Escherichia coli, specific data on in vivo PKs (tissue distribution, route of administration, and basic PK parameters in animals and humans) and PDs (survival and reduction of bacterial burden in relation to the route of administration, timing of therapy, dosing regimens, and resistance) are summarized. Currently available data merit close scrutiny, and optimization of bacteriophage therapy in the context of a better understanding of the underlying PK/PD principles is urgent to improve its therapeutic effect and to minimize the occurrence of bacteriophage resistance.

3.
J Clin Microbiol ; 62(8): e0074324, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39072625

ABSTRACT

Double-layer agar (DLA) overlay plaque assay is the gold standard for phage enumeration. However, it is cumbersome and time-consuming. Given the great interest in phage therapy, we explored alternative assays for phage quantitation. A total of 16 different phages belonging to Myoviridae, Siphoviridae, and Podoviridae families were quantitated with five K. pneumoniae, eight P. aeruginosa, and three A. baumannii host isolates. Phages were quantitated with the standard DLA assay (10 mL of LB soft agar 0.7% on LB hard agar 1.5%) and the new single-layer agar (SLA) assay (10 mL of LB soft agar 0.7%) with phages spread (spread) into or spotted (spot) onto soft agar. Phage concentrations with each assay were correlated with the standard assay, and the relative and absolute differences between each assay and the standard double-layer agar spread were calculated. Phage concentrations 1 × 104-8.3 x1012 PFU/mL with the standard DLA assay were quantitated with SLA-spread, SLA-spot, and DLA-spot assays, and the median (range) relative and absolute differences were <10% and <0.98 log10PFU/mL, respectively, for all phage/bacterial species (ANOVA P = 0.1-0.43), and they were highly correlated (r > 0.77, P < 0.01). Moreover, plaques could be quantified at 37°C after 4-h incubation for K. pneumoniae phages and 6-h incubation for P. aeruginosa and A. baumannii phages, and estimated concentrations remained the same over 24 hours. Compared to DLA assay, the SLA-spot assay required less media, it was 10 times faster, and generated same-day results. The SLA-spot assay was cheaper, faster, easier to perform, and generated similar phage concentrations as the standard DLA-spread assay.


Subject(s)
Bacteriophages , Bacteriophages/isolation & purification , Acinetobacter baumannii/virology , Pseudomonas aeruginosa/virology , Humans , High-Throughput Screening Assays/methods , Drug Resistance, Multiple, Bacterial , Viral Load/methods , Klebsiella pneumoniae/virology , Podoviridae/isolation & purification , Myoviridae/isolation & purification , Myoviridae/classification , Siphoviridae/isolation & purification , Siphoviridae/classification
4.
Mycopathologia ; 189(4): 64, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990395

ABSTRACT

Since its inception in 2002, the EUCAST Antifungal Susceptibility Testing Subcommittee (AFST) has developed and refined susceptibility testing methods for yeast, moulds and dermatophytes, and established epidemiological cut-off values and breakpoints for antifungals. For yeast, three challenges have been addressed. Interpretation of trailing growth in fluconazole susceptibility testing, which has been proven without impact on efficacy if below the 50% endpoint. Variability in rezafungin MIC testing due to laboratory conditions, which has been solved by the addition of Tween 20 to the growth medium in E.Def 7.4. And third, interpretation of MICs for rare yeast with no breakpoints, where recommendations have been established for MIC-based clinical advice. For moulds, refinements include the validation of spectrophotometer reading for A. fumigatus to facilitate objective MIC determination, and for dermatophytes the establishment of a microdilution method with automated reading and a selective medium to minimise the risk of contaminations. Recent initiatives involve development and validation of agar-based screening assays for detection of potential azole and echinocandin resistance in A. fumigatus and Aspergillus species, respectively, and of terbinafine resistance in Trichophyton species. Moreover, the development of a EUCAST guidance document for molecular resistance testing represents an advancement, particularly for identifying target gene alterations associated with resistance. In summary, EUCAST AFST continues to play a pivotal role in standardizing AFST and facilitating accurate interpretation of susceptibility data for clinical decision-making. Adoption of EUCAST breakpoints for commercial test methods, however, requires thorough validation to ensure concordance with EUCAST reference testing species-specific MIC distributions.


Subject(s)
Antifungal Agents , Fungi , Microbial Sensitivity Tests , Microbial Sensitivity Tests/methods , Microbial Sensitivity Tests/standards , Antifungal Agents/pharmacology , Humans , Fungi/drug effects , Drug Resistance, Fungal
5.
Antimicrob Agents Chemother ; 68(8): e0022524, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-38958455

ABSTRACT

As comparative pharmacokinetic/pharmacodynamic (PK/PD) studies of liposomal amphotericin B (L-AMB) against Candida spp. are lacking, we explored L-AMB pharmacodynamics against different Candida species in an in vitro PK/PD dilution model. Eight Candida glabrata, Candida parapsilosis, and Candida krusei isolates (EUCAST/CLSI AMB MIC 0.125-1 mg/L) were studied in the in vitro PK/PD model simulating L-AMB Cmax = 0.25-64 mg/L and t1/2 = 9 h. The model was validated with one susceptible and one resistant Candida albicans isolate. The Cmax/MIC-log10CFU/mL reduction from the initial inoculum was analyzed with the Emax model, and Monte Carlo analysis was performed for the standard (3 mg/kg with Cmax = 21.87 ± 12.47 mg/L) and higher (5 mg/kg with Cmax = 83 ± 35.2 mg/L) L-AMB dose. A ≥1.5 log10CFU/mL reduction was found at L-AMB Cmax = 8 mg/L against C. albicans, C. parapsilosis, and C. krusei isolates (MIC 0.25-0.5 mg/L) whereas L-AMB Cmax ≥ 32 mg/L was required for C. glabrata isolates. The in vitro PK/PD relationship followed a sigmoidal pattern (R2 ≥ 0.85) with a mean Cmax/MIC required for stasis of 2.1 for C. albicans (close to the in vivo stasis), 24/17 (EUCAST/CLSI) for C. glabrata, 8 for C. parapsilosis, and 10 for C. krusei. The probability of target attainment was ≥99% for C. albicans wild-type (WT) isolates with 3 mg/kg and for wild-type isolates of the other species with 5 mg/kg. L-AMB was four- to eightfold less active against the included non-C. albicans species than C. albicans. A standard 3-mg/kg dose is pharmacodynamically sufficient for C. albicans whereas our data suggest that 5 mg/kg may be recommendable for the included non-C. albicans species.


Subject(s)
Amphotericin B , Antifungal Agents , Candida , Microbial Sensitivity Tests , Monte Carlo Method , Amphotericin B/pharmacokinetics , Amphotericin B/pharmacology , Antifungal Agents/pharmacokinetics , Antifungal Agents/pharmacology , Candida/drug effects , Drug Resistance, Fungal , Candida glabrata/drug effects , Candida albicans/drug effects , Candidiasis/drug therapy , Candidiasis/microbiology , Humans
6.
Future Microbiol ; 19(9): 825-840, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38700287

ABSTRACT

The SARS-CoV-2 pandemic put an unprecedented strain on modern societies and healthcare systems. A significantly higher incidence of invasive fungal co-infections was noted compared with the pre-COVID-19 era, adding new diagnostic and therapeutic challenges in the critical care setting. In the current narrative review, we focus on invasive mold infections caused by Aspergillus and Mucor species in critically ill COVID-19 patients. We discuss up-to-date information on the incidence, pathogenesis, diagnosis and treatment of these mold-COVID-19 co-infections, as well as recommendations on preventive and prophylactic interventions. Traditional risk factors were often not recognized in COVID-19-associated aspergillosis and mucormycosis, highlighting the role of other determinant risk factors. The associated patient outcomes were worse compared with COVID-19 patients without mold co-infection.


[Box: see text].


Subject(s)
COVID-19 , Coinfection , Critical Illness , Invasive Fungal Infections , Mucormycosis , SARS-CoV-2 , Humans , COVID-19/complications , COVID-19/epidemiology , Mucormycosis/epidemiology , Coinfection/epidemiology , Coinfection/microbiology , Coinfection/virology , Invasive Fungal Infections/epidemiology , Risk Factors , Aspergillus/isolation & purification , Aspergillus/pathogenicity , Aspergillosis/epidemiology , Aspergillosis/microbiology , Mucor/isolation & purification , Mucor/pathogenicity , Antifungal Agents/therapeutic use , Incidence
7.
J Mycol Med ; 34(2): 101477, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574412

ABSTRACT

BACKGROUND: Candida auris was sporadically detected in Greece until 2019. Thereupon, there has been an increase in isolations among inpatients of healthcare facilities. AIM: We aim to report active surveillance data on MALDI-TOF confirmed Candida auris cases and outbreaks, from November 2019 to September 2021. METHODS: A retrospective study on hospital-based Candida auris data, over a 23-month period was conducted, involving 11 hospitals within Attica region. Antifungal susceptibility testing and genotyping were conducted. Case mortality and fatality rates were calculated and p-values less than 0.05 were considered statistically significant. Infection control measures were enforced and enhanced. RESULTS: Twenty cases with invasive infection and 25 colonized were identified (median age: 72 years), all admitted to hospitals for reasons other than fungal infections. Median hospitalisation time until diagnosis was 26 days. Common risk factors among cases were the presence of indwelling devices (91.1 %), concurrent bacterial infections during hospitalisation (60.0 %), multiple antimicrobial drug treatment courses prior to hospitalisation (57.8 %), and admission in the ICU (44.4 %). Overall mortality rate was 53 %, after a median of 41.5 hospitalisation days. Resistance to fluconazole and amphotericin B was identified in 100 % and 3 % of tested clinical isolates, respectively. All isolates belonged to South Asian clade I. Outbreaks were identified in six hospitals, while remaining hospitals detected sporadic C. auris cases. CONCLUSION: Candida auris has proven its ability to rapidly spread and persist among inpatients and environment of healthcare facilities. Surveillance focused on the presence of risk factors and local epidemiology, and implementation of strict infection control measures remain the most useful interventions.


Subject(s)
Antifungal Agents , Candida auris , Candidiasis , Cross Infection , Disease Outbreaks , Microbial Sensitivity Tests , Humans , Greece/epidemiology , Aged , Disease Outbreaks/statistics & numerical data , Male , Female , Retrospective Studies , Middle Aged , Aged, 80 and over , Antifungal Agents/therapeutic use , Antifungal Agents/pharmacology , Candidiasis/epidemiology , Candidiasis/microbiology , Cross Infection/epidemiology , Cross Infection/microbiology , Candida auris/genetics , Adult , Hospitals/statistics & numerical data , Health Facilities/statistics & numerical data , Infection Control , Risk Factors , Drug Resistance, Fungal , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Candida/isolation & purification , Candida/drug effects , Candida/classification , Hospitalization/statistics & numerical data
8.
J Clin Microbiol ; 62(4): e0152823, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38501836

ABSTRACT

Although the Vitek 2 system is broadly used for antifungal susceptibility testing of Candida spp., its performance against Candida auris has been assessed using limited number of isolates recovered from restricted geographic areas. We therefore compared Vitek 2 system with the reference Clinical and Laboratory Standards Institute (CLSI) broth microdilution method using an international collection of 100 C. auris isolates belonging to different clades. The agreement ±1 twofold dilution between the two methods and the categorical agreement (CA) based on the Centers for Disease Control and Prevention's (CDC's) tentative resistance breakpoints and Vitek 2-specific wild-type upper limit values (WT-ULVs) were determined. The CLSI-Vitek 2 agreement was poor for 5-flucytosine (0%), fluconazole (16%), and amphotericin B (29%), and moderate for voriconazole (61%), micafungin (67%), and caspofungin (81%). Significant interpretation errors were recorded using the CDC breakpoints for amphotericin B (31% CA, 69% major errors; MaEs) and fluconazole (69% CA, 31% very major errors; VmEs), but not for echinocandins (99% CA, 1% MaEs for both micafungin and caspofungin) for which the Vitek 2 allowed correct categorization of echinocandin-resistant FKS1 mutant isolates. Discrepancies were reduced when the Vitek 2 WT-ULV of 16 mg/L for amphotericin B (98% CA, 2% MaEs) and of 4 mg/L for fluconazole (96% CA, 1% MaEs, 3% VmEs) were used. In conclusion, the Vitek 2 system performed well for echinocandin susceptibility testing of C .auris. Resistance to fluconazole was underestimated whereas resistance to amphotericin B was overestimated using the CDC breakpoints of ≥32 and ≥2 mg/L, respectively. Vitek 2 minimun inhibitory concentrations (MICs) >4 mg/L indicated resistance to fluconazole and Vitek 2 MICs ≤16 mg/L indicated non-resistance to amphotericin B.


Subject(s)
Amphotericin B , Fluconazole , Humans , Fluconazole/pharmacology , Amphotericin B/pharmacology , Antifungal Agents/pharmacology , Candida auris , Micafungin , Caspofungin , Microbial Sensitivity Tests , Echinocandins/pharmacology
9.
J Fungi (Basel) ; 10(3)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38535222

ABSTRACT

Commercial tests are often employed in clinical microbiology laboratories for antifungal susceptibility testing of filamentous fungi. Method-dependent epidemiological cutoff values (ECVs) have been defined in order to detect non-wild-type (NWT) isolates harboring resistance mechanisms. We reviewed the literature in order to find studies where commercial methods were used to evaluate for in vitro susceptibility of filamentous fungi and assess their ability to detect NWT isolates according to the available ECVs. Data were found for the gradient concentration strips Etest and MIC Test Strips (MTS), broth microdilution Sensititre YeastOne (SYO), Micronaut-AM and the agar dilution VIPcheck assays. Applying itraconazole, voriconazole and posaconazole Etest ECVs for A. fumigatus, Etest was able to detect 90.3% (84/93), 61.2% (90/147) and 86% (31/36) of isolates with known cyp51A mutations, respectively. Moreover, Etest also was able to detect 3/3 fks mutants using caspofungin ECVs and 2/3 micafungin mutant isolates. Applying the voriconazole and posaconazole SYO ECVs, 57.7% (67/116) and 100% (47/47) of mutants with known cyp51A substitutions were classified as NWT, respectively. VIPcheck detected 90.3% (159/176), 80.1% (141/176) and 66% (141/176)of mutants via itraconazole, voriconazole and posaconazole, respectively, whereas Micronaut-AM detected 88% (22/25). In conclusion, Etest posaconazole and itraconazole, as well as micafungin and caspofungin ECVs, detected A. fumigatus mutants. On the other hand, while the posaconazole SYO ECV was able to detect cyp51A mutants, similar data were not observed with the SYO voriconazole ECV.

10.
J Antimicrob Chemother ; 79(1): 157-165, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38000088

ABSTRACT

BACKGROUND: Pharmacokinetic/pharmacodynamic (PK/PD) targets of echinocandins failed to support current clinical breakpoints of Candida parapsilosis as the PTA is low for susceptible isolates despite the good clinical efficacy of echinocandins against these infections. We therefore investigated the effect of micafungin against C. parapsilosis using an in vitro PK/PD in the presence of 10% human serum. METHODS: Three susceptible (MIC = 0.5-2 mg/L) and one resistant (MIC > 8 mg/L) C. parapsilosis sensu stricto isolates were tested at two different inocula (104 and 103 cfu/mL) simulating micafungin human exposures in RPMI and in RPMI + 10% pooled human serum. The exposure-effect relationship tAUC0-24/MIC was described and different PK/PD targets were determined in order to calculate the PTA for the standard 100 mg IV q24h dose. RESULTS: A maximal effect was found at fCmax ≥ 4 mg/L in RPMI and tCmax ≥ 64 mg/L (fCmax = 0.08 mg/L) in the presence of serum for which in vitro PK/PD targets were 50 times lower. Stasis in the presence of serum was found at 272-240 tAUC0-24/MIC, close to the clinical PK/PD target (285 tAUC/MIC), validating the in vitro model. However, the PTA was low for susceptible isolates with EUCAST/CLSI MICs ≤ 2 mg/L. Among the different PK/PD targets investigated, the PK/PD target 28 tAUC/MIC associated with 10% of maximal effect with the low inoculum resulted in PTAs ≥ 95% for susceptible isolates with EUCAST/CLSI MICs ≤ 2 mg/L. CONCLUSIONS: A new PK/PD target was found for micafungin and C. parapsilosis that supports the current clinical breakpoint. This target could be used for assessing echinocandin efficacy against C. parapsilosis.


Subject(s)
Antifungal Agents , Candida parapsilosis , Humans , Micafungin/pharmacology , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Lipopeptides/pharmacology , Candida , Echinocandins/pharmacology , Mitomycin/pharmacology , Microbial Sensitivity Tests
11.
J Clin Microbiol ; 62(1): e0130823, 2024 01 17.
Article in English | MEDLINE | ID: mdl-38117081

ABSTRACT

Resistance in dermatophytes is an emerging global public health issue. We, therefore, developed an agar-based method for screening Trichophyton spp. susceptibility to terbinafine (TRB), itraconazole (ITC), and amorolfine (AMF) and validated it using molecularly characterized isolates. Α total of 40 Trichophyton spp. isolates, 28 TRB wild type (WT) (13 T. rubrum, 10 T. mentagrophytes, 5 T. interdigitale) and 12 TRB non-WT (7 T. rubrum, 5 T. indotineae) with different alterations in the squalene epoxidase (SQLE) gene, were used. The optimal test conditions (inoculum and drug concentrations, incubation time, and temperature) and stability over time were evaluated. The method was then applied for 86 WT Trichophyton spp. clinical isolates (68 T. rubrum, 7 T. interdigitale, 6 T. tonsurans, 5 T. mentagrophytes) and 4 non-WT T. indotineae. Optimal growth of drug-free controls was observed using an inoculum of 20 µL 0.5 McFarland after 5-7 days of incubation at 30°C. The optimal concentrations that prevented the growth of WT isolates were 0.016 mg/L of TRB, 1 mg/L of ITC, and 0.25 mg/L of AMF, whereas 0.125 mg/L of TRB was used for the detection of Trichophyton strong SQLE mutants (MIC ≥0.25 mg/L). The agar plates were stable up to 4 months. Inter-observer and inter-experimental agreement were 100%, and the method successfully detected TRB non-WT Trichophyton spp. strains showing 100% agreement with the reference EUCAST methodology. An agar-based method was developed for screening Trichophyton spp. in order to detect TRB non-WT weak and strong mutant isolates facilitating their detection in non-expert routine diagnostic laboratories.


Subject(s)
Arthrodermataceae , Itraconazole , Morpholines , Humans , Terbinafine/pharmacology , Itraconazole/pharmacology , Trichophyton/genetics , Antifungal Agents/pharmacology , Agar , Microbial Sensitivity Tests , Squalene Monooxygenase/genetics , Drug Resistance, Fungal/genetics , Arthrodermataceae/genetics
12.
J Infect Dis ; 229(2): 599-607, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38109276

ABSTRACT

BACKGROUND: Candida auris isolates exhibit elevated amphotericin B (AMB) minimum inhibitory concentrations (MICs). As liposomal AMB (L-AMB) can be safely administered at high doses, we explored L-AMB pharmacodynamics against C. auris isolates in an in vitro pharmacokinetic/pharmacodynamic (PK/PD) dilution model. METHODS: Four C. auris isolates with Clinical and Laboratory Standards Institute (CLSI) AMB MICs = 0.5-2 mg/L were tested in an in vitro PK/PD model simulating L-AMB pharmacokinetics. The in vitro model was validated using a Candida albicans isolate tested in animals. The peak concentration (Cmax)/MIC versus log10 colony-forming units (CFU)/mL reduction from the initial inoculum was analyzed with the sigmoidal model with variable slope (Emax model). Monte Carlo analysis was performed for the standard (3 mg/kg) and higher (5 mg/kg) L-AMB doses. RESULTS: The in vitro PK/PD relationship Cmax/MIC versus log10 CFU/mL reduction followed a sigmoidal pattern (R2 = 0.91 for C. albicans, R2 = 0.86 for C. auris). The Cmax/MIC associated with stasis was 2.1 for C. albicans and 9 for C. auris. The probability of target attainment was >95% with 3 mg/kg for wild-type C. albicans isolates with MIC ≤2 mg/L and C. auris isolates with MIC ≤1 mg/L whereas 5 mg/kg L-AMB is needed for C. auris isolates with MIC 2 mg/L. CONCLUSIONS: L-AMB was 4-fold less active against C. auris than C. albicans. Candida auris isolates with CLSI MIC 2 mg/L would require a higher L-AMB dose.


Subject(s)
Amphotericin B , Antifungal Agents , Animals , Amphotericin B/pharmacology , Antifungal Agents/pharmacokinetics , Candida auris , Candida , Candida albicans , Microbial Sensitivity Tests
13.
J Intensive Med ; 3(4): 291-297, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-38028641

ABSTRACT

The frequency of co-infections with bacterial or fungal pathogens has constantly increased among critically ill patients with coronavirus disease 2019 (COVID-19) during the pandemic. Candidemia was the most frequently reported invasive fungal co-infection. The onset of candidemia in COVID-19 patients was often delayed compared to non-COVID-19 patients. Additionally, Candida invasive infections in COVID-19 patients were more often linked to invasive procedures (e.g., invasive mechanical ventilation or renal replacement therapy) during the intensive care stay and the severity of illness rather than more "classic" risk factors present in patients without COVID-19 (e.g., underlying diseases and prior hospitalization). Moreover, apart from the increased incidence of candidemia during the pandemic, a worrying rise in fluconazole-resistant strains was reported, including a rise in the multidrug-resistant Candida auris. Regarding outcomes, the development of invasive Candida co-infection had a negative impact, increasing morbidity and mortality compared to non-co-infected COVID-19 patients. In this narrative review, we present and critically discuss information on the diagnosis and management of invasive fungal infections caused by Candida spp. in critically ill COVID-19 patients.

14.
J Antimicrob Chemother ; 78(12): 2830-2839, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37811550

ABSTRACT

BACKGROUND: Because of the high inoculum (105 cfu/mL) used in the EUCAST susceptibility testing of Aspergillus spp., determination of the minimal effective concentration (MEC) of echinocandins is challenging as the morphological differences are subtle. METHODS: The MECs of 10 WT and 4 non-WT Aspergillus fumigatus isolates were determined with the EUCAST E.Def 9.4. Plates were inoculated with increasing inocula (102-105 cfu/mL) and after 24 and 48 h of incubation, MECs were determined macroscopically (magnifying mirror) and microscopically (inverted microscope) by two observers, spectrophotometrically (OD at 405 nm) and colorimetrically (absorbance at 450/630 nm after 2 h incubation with 400 mg/L XTT/6.25 µM menadione). The interobserver (between observers)/intermethod (compared with the microscopic method) essential agreement (EA, ±1 2-fold dilution) and categorical agreement (CA) were determined for each inoculum. RESULTS: Echinocandin-induced microscopic hyphal alterations or macroscopic changes in turbidity were subtle with a 105 cfu/mL inoculum compared with the lower inocula of 103 and 102 cfu/mL, where more distinct changes in turbidity and formation of characteristic rosettes were obvious at the MEC after 48 h. A 105 cfu/mL inoculum resulted in wider MEC distributions (3-6 dilutions) and lower interobserver EA (69%), macroscopic-microscopic EA (26%) and CA (71%) compared with a 103 cfu/mL inoculum (2-3 dilutions, 100%, 100% and 100%, respectively). Spectrophotometric readings using a 103 cfu/mL inoculum showed good EA (57-93%) and excellent CA (86%-100%), while the XTT assay demonstrated excellent EA (93%) and CA (100%). CONCLUSIONS: A 48 h incubation using a 103 cfu/mL inoculum improved echinocandin MEC determination for A. fumigatus with the EUCAST method, while the colorimetric assay could allow automation.


Subject(s)
Aspergillus fumigatus , Echinocandins , Echinocandins/pharmacology , Antifungal Agents/pharmacology , Aspergillus , Spectrophotometry , Microbial Sensitivity Tests
15.
J Fungi (Basel) ; 9(4)2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37108889

ABSTRACT

The in vitro/in vivo correlation of antifungal combination testing is necessary in order to assess the efficacy of combination regimens. We, therefore, attempted to correlate in vitro chequerboard testing of posaconazole (POS) and amphotericin B (AMB) with the in vivo outcome of combination therapy against experimental candidiasis in a neutropenic murine model. The AMB + POS combination was tested against a Candida albicans isolate. In vitro, a broth microdilution 8 × 12 chequerboard method with serial two-fold drug dilutions was used. In vivo, CD1 female neutropenic mice with experimental disseminated candidiasis were treated with i.p. AMB and p.o. POS alone and in combination at three effective doses (ED20, ED50 and ED80 corresponding to 20%, 50% and 80% of maximal effect, respectively). CFU/kidneys after 2 days were determined. The pharmacodynamic interactions were assessed based on Bliss independence interaction analysis. In vitro, a Bliss antagonism of -23% (-23% to -22%) was observed at 0.03-0.125 mg/L of AMB with 0.004-0.015 mg/L of POS, while a Bliss synergy of 27% (14%-58%) was observed at 0.008-0.03 mg/L of AMB with 0.000015-0.001 mg/L of POS. In vivo, Bliss synergy (13 ± 4%) was found when an AMB ED20 of 1 mg/kg was combined with all POS ED 0.2-0.9 mg/kg, while Bliss antagonism (35-83%) was found for the combinations of AMB ED50 2 mg/kg and ED80 3.2 mg/kg with POS ED80 of 0.9 mg/kg. Free drug serum levels of POS and AMB in in vivo synergistic and antagonistic combinations were correlated with the in vitro synergistic and antagonistic concentrations, respectively. Both synergistic and antagonistic interactions were found for the AMB + POS combination. POS compromised the efficacy of high effective AMB doses and enhanced low ineffective AMB doses. In vitro concentration-dependent interactions were correlated with in vivo dose-dependent interactions of the AMB + POS combination. In vivo interactions occurred at free drug serum levels close to in vitro interacting concentrations.

16.
J Antimicrob Chemother ; 78(6): 1386-1394, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37071557

ABSTRACT

BACKGROUND: The CLSI breakpoint for micafungin and Candida albicans is 0.25 mg/L, higher than the CLSI epidemiological cut-off value (0.03 mg/L) whereas the EUCAST values are identical (0.016 mg/L). We developed a novel in vitro dialysis-diffusion pharmacokinetic/pharmacodynamic (PK/PD) model, confirmed correlation to in vivo outcome and studied micafungin pharmacodynamics against Canida albicans. METHODS: Four C. albicans isolates, including a weak (F641L) and a strong (R647G) fks1 mutants, were studied using a 104 cfu/mL inoculum and RPMI medium with and without 10% pooled human serum. The exposure-effect relationship fAUC0-24/MIC was described for CLSI and EUCAST methodology. Monte Carlo simulation analysis included standard (100 mg i.v.) and higher (150-300 mg) doses q24h to determine the corresponding probability of target attainment (PTA). RESULTS: The in vitro PK/PD targets for stasis/1-log kill were 36/57 fAUC0-24/MIC in absence and 2.8/9.2 fAUC0-24/MIC in the presence of serum, and similar for wild-type and fks mutant isolates. The PTAs for both PK/PD targets were high (>95%) for EUCAST susceptible isolates but not for CLSI susceptible non-wild-type isolates (CLSI MICs 0.06-0.25 mg/L). 300 mg q24h was needed to attain PK/PD targets for non-wild-type isolates with CLSI MICs 0.06-0.125 mg/L and EUCAST MICs 0.03-0.06 mg/L. CONCLUSION: The in vitro 1-log kill effect corresponded to stasis in animal model and mycological response in patients with invasive candidiasis, thereby validating the model for studying pharmacodynamics of echinocandins in vitro. EUCAST breakpoints were well supported by our findings but our data questions whether the current CLSI breakpoint, which is higher than the epidemiological cut-off values, is appropriate.


Subject(s)
Candida albicans , Candidiasis, Invasive , Animals , Humans , Micafungin/pharmacology , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Candida , Echinocandins/pharmacology , Candidiasis, Invasive/drug therapy , Microbial Sensitivity Tests
17.
Microbiol Spectr ; 11(3): e0443122, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37036351

ABSTRACT

Significant variation in minimal inhibitory concentrations (MIC) has been reported for amphotericin B (AMB) and C. auris, depending on the antifungal susceptibility testing (AFST) method. Although the Sensititre YeastOne (SYO) is widely used in routine laboratory testing, data regarding its performance for the AFST of C. auris are scarce. We tested AMB against 65 C. auris clinical isolates with the SYO and the reference methodology by the Clinical and Laboratory Standards Institute (CLSI). The essential agreement (EA, ±1 dilution) between the two methods and the categorical agreement (CA) based on the Centers for Disease Control and Prevention (CDC)'s tentative breakpoint of MIC ≥ 2 mg/L were determined. The SYO wild type upper limit value (WT-UL) was determined using the ECOFFinder. The modal (range) CLSI growth inhibitory MIC was lower than the SYO colorimetric MIC [1(0.25-1) versus 2(1-8) mg/L, respectively]). The CLSI-colorimetric SYO EA was 29% and the CA was 11% (89% major errors; MaE). MaE were reduced when the SYO WT-UL of 8 mg/L was used (0% MaE). Alternatively, the use of SYO growth inhibition endpoints of MIC-1 (75% growth inhibition) or MIC-2 (50% growth inhibition) resulted in 88% CA with 12% MaE and 97% CA with 3% MaE, respectively. In conclusion, SYO overestimated AMB resistance in C. auris isolates when colorimetric MICs, as per SYO instructions and the CDC breakpoint of 2 mg/L, were used. This can be improved either by using the method-specific WT-UL MIC of 8 mg/L for colorimetric MICs or by determining growth inhibition MIC endpoints, regardless of the color. IMPORTANCE Candida auris is an emerging and frequently multidrug-resistant fungal pathogen that accounts for life-threatening invasive infections and nosocomial outbreaks worldwide. Reliable AF is important for the choice of the optimal treatment. Commercial methods are frequently used without prior vigorous assessment. Resistance to AMB was over-reported with the commercial colorimetric method Sensititre YeastOne (SYO). SYO produced MICs that were 1 to 2 twofold dilutions higher than those of the reference CLSI method, resulting in 89% MaE. MaE were reduced using a SYO-specific colorimetric wild type upper limit MIC value of 8 mg/L (0%) or a 50% growth inhibition endpoint (3%).


Subject(s)
Antifungal Agents , Candidiasis , Humans , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Amphotericin B/pharmacology , Amphotericin B/therapeutic use , Candida auris , Candidiasis/drug therapy , Candidiasis/microbiology , Candida , Microbial Sensitivity Tests
18.
Front Immunol ; 14: 1125030, 2023.
Article in English | MEDLINE | ID: mdl-36911708

ABSTRACT

Background: The outcome of COVID-19 in allogeneic hematopoietic stem cell transplantation (HSCT) recipients is almost uniformely considered poor. The aim of present study was to retrospectively analyse the outcome and risk factors for mortality in a large series of patients who developed COVID-19 infection after an allogeneic HSCT. Methods: This multicenter retrospective study promoted by the European Hematology Association - Infections in Hematology Study Working Group, included 326 adult HSCT patients who had COVID-19 between January 2020 and March 2022. Results: The median time from HSCT to the diagnosis of COVID-19 was 268 days (IQR 86-713; range 0-185 days). COVID-19 severity was mild in 21% of the patients, severe in 39% and critical in 16% of the patients. In multivariable analysis factors associated with a higher risk of mortality were, age above 50 years, presence of 3 or more comorbidities, active hematologic disease at time of COVID-19 infection, development of COVID-19 within 12 months of HSCT, and severe/critical infections. Overall mortality rate was 21% (n=68): COVID-19 was the main or secondary cause of death in 16% of the patients (n=53). Conclusions: Mortality in HSCT recipients who develop COVID-19 is high and largely dependent on age, comorbidities, active hematologic disease, timing from transplant and severity of the infection.


Subject(s)
COVID-19 , Hematologic Diseases , Hematopoietic Stem Cell Transplantation , Adult , Humans , Middle Aged , Retrospective Studies , COVID-19/etiology , Hematologic Diseases/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Stem Cell Transplantation
19.
Antimicrob Agents Chemother ; 67(2): e0143322, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36692307

ABSTRACT

Temocillin is used for the treatment of various infections caused by Enterobacterales. The pharmacokinetic (PK)/pharmacodynamic (PD) index that is best correlated with the activity of beta-lactams is the percentage of time that the unbound concentration exceeds the MIC (%fT>MIC). However, the %fT>MIC needed for a bacteriostatic or killing effect of temocillin is unknown in thigh and lung infection models. In the present study, we studied the temocillin PK in plasma and epithelial lining fluid (ELF) of infected neutropenic mice and determined the plasma exposure-response relationships for Escherichia coli and Klebsiella pneumoniae. Neutropenic murine thigh and lung infection models were used. The bacterial loads in the thighs or lungs were determined. A sigmoid maximum-effect model was used to fit the plasma exposure-response relationship. A one-compartment model with first-order absorption best described temocillin PK (clearance [CL], 1.03 L/h/kg; volume of distribution [V], 0.457 L/kg). Protein binding was 78.2% ± 1.3% across different plasma concentrations. A static effect was achieved for all strains in both the thigh and lung infection models. However, the median %fT>MIC needed for a static effect was much lower in the lung infection model (27.8% for E. coli and 38.2% for K. pneumoniae) than in the thigh infection model (65.2% for E. coli and 64.9% for K. pneumoniae). A 1-log kill was reached for all strains in the lung infection model (median %fT>MIC values of 42.1% for E. coli and 44.1% for K. pneumoniae) and 7 out of 8 strains in the thigh infection model (median %fT>MIC values of 85.4% for E. coli and 74.5% for K. pneumoniae). These data support the use of temocillin in patients with pneumonia.


Subject(s)
Communicable Diseases , Neutropenia , Mice , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Escherichia coli , Penicillins/pharmacology , Penicillins/therapeutic use , Lung/microbiology , Communicable Diseases/drug therapy , Klebsiella pneumoniae , Neutropenia/drug therapy , Microbial Sensitivity Tests , Thigh/microbiology
20.
J Antimicrob Chemother ; 78(3): 832-839, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36718051

ABSTRACT

BACKGROUND: Although polymyxin B has been in use since the late 1950s, there have been limited studies done to unravel its pharmacokinetics (PK) and pharmacodynamics (PD) index. METHODS: We determined, in neutropenic infected mice, the PK, plasma protein binding and PK/PD index best correlating with efficacy for Escherichia coli and Klebsiella pneumoniae strains. RESULTS: The pharmacokinetic profile showed non-linear PK; dose was significantly correlated with absorption rate and clearance. The inhibitory sigmoid dose-effect model for the fCmax/MIC index of E. coli fitted best, but was only modestly higher than the R2 of %fT>MIC and fAUC/MIC (R2 0.91-0.93). For K. pneumoniae the fAUC/MIC index had the best fit, which was slightly higher than the R2 of %fT>MIC and fCmax/MIC (R2 0.85-0.91). Static targets of polymyxin B fAUC/MIC were 27.5-102.6 (median 63.5) and 5.9-60.5 (median 11.6) in E. coli and in K. pneumoniae isolates, respectively. A 1 log kill effect was only reached in two E. coli isolates and one K. pneumoniae. The PTA with the standard dosing was low for isolates with MIC >0.25 mg/L. CONCLUSIONS: This study confirms that fAUC/MIC can describe the exposure-response relationship for polymyxin B. The 1 log kill effect was achieved in the minority of the isolates whereas polymyxin B PK/PD targets cannot be attained for the majority of clinical isolates with the standard dosing regimen, indicating that polymyxin B may be not effective against serious infections as monotherapy.


Subject(s)
Anti-Bacterial Agents , Polymyxin B , Mice , Animals , Polymyxin B/pharmacology , Anti-Bacterial Agents/pharmacology , Klebsiella pneumoniae , Escherichia coli , Blood Proteins , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL