Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 19858, 2022 11 18.
Article in English | MEDLINE | ID: mdl-36400804

ABSTRACT

SARS-CoV-2 variants accumulating immune escape mutations provide a significant risk to vaccine-induced protection against infection. The novel variant of concern (VoC) Omicron BA.1 and its sub-lineages have the largest number of amino acid alterations in its Spike protein to date. Thus, they may efficiently escape recognition by neutralizing antibodies, allowing breakthrough infections in convalescent and vaccinated individuals in particular in those who have only received a primary immunization scheme. We analyzed neutralization activity of sera from individuals after vaccination with all mRNA-, vector- or heterologous immunization schemes currently available in Europe by in vitro neutralization assay at peak response towards SARS-CoV-2 B.1, Omicron sub-lineages BA.1, BA.2, BA.2.12.1, BA.3, BA.4/5, Beta and Delta pseudotypes and also provide longitudinal follow-up data from BNT162b2 vaccinees. All vaccines apart from Ad26.CoV2.S showed high levels of responder rates (96-100%) towards the SARS-CoV-2 B.1 isolate, and minor to moderate reductions in neutralizing Beta and Delta VoC pseudotypes. The novel Omicron variant and its sub-lineages had the biggest impact, both in terms of response rates and neutralization titers. Only mRNA-1273 showed a 100% response rate to Omicron BA.1 and induced the highest level of neutralizing antibody titers, followed by heterologous prime-boost approaches. Homologous BNT162b2 vaccination, vector-based AZD1222 and Ad26.CoV2.S performed less well with peak responder rates of 48%, 56% and 9%, respectively. However, Omicron responder rates in BNT162b2 recipients were maintained in our six month longitudinal follow-up indicating that individuals with cross-protection against Omicron maintain it over time. Overall, our data strongly argue for booster doses in individuals who were previously vaccinated with BNT162b2, or a vector-based primary immunization scheme.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Neutralization Tests , Antibodies, Viral , COVID-19 Vaccines , RNA, Messenger , Ad26COVS1 , BNT162 Vaccine , COVID-19/prevention & control , ChAdOx1 nCoV-19 , Vaccination
2.
Microorganisms ; 10(11)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36422355

ABSTRACT

Lyme borreliosis is the leading tick-related illness in Europe, caused by Borrelia Burgdorferi s.l. Lower Saxony, Germany, including its capital, Hanover, has a higher proportion of infected ticks than central European countries, justifying a research focus on the potential human consequences. The current knowledge gap on human incident infections, particularly in Western Germany, demands serological insights, especially regarding a potentially changing climate-related tick abundance and activity. We determined the immunoglobulin G (IgG) and immunoglobulin M (IgM) serostatuses for 8009 German National Cohort (NAKO) participants from Hanover, examined in 2014-2018. We used an enzyme-linked immunosorbent assay (ELISA) as the screening and a line immunoblot as confirmation for the Borrelia Burgdorferi s.l. antibodies. We weighted the seropositivity proportions to estimate general population seropositivity and estimated the force of infection (FOI). Using logistic regression, we investigated risk factors for seropositivity. Seropositivity was 3.0% (IgG) and 2.1% (IgM). The FOI varied with age, sharply increasing in participants aged ≥40 years. We confirmed advancing age and male sex as risk factors. We reported reduced odds for seropositivity with increasing body mass index and depressive symptomatology, respectively, pointing to an impact of lifestyle-related behaviors. The local proportion of seropositive individuals is comparable to previous estimates for northern Germany, indicating a steady seroprevalence.

3.
Front Immunol ; 13: 828053, 2022.
Article in English | MEDLINE | ID: mdl-35251012

ABSTRACT

Recent increases in SARS-CoV-2 infections have led to questions about duration and quality of vaccine-induced immune protection. While numerous studies have been published on immune responses triggered by vaccination, these often focus on studying the impact of one or two immunisation schemes within subpopulations such as immunocompromised individuals or healthcare workers. To provide information on the duration and quality of vaccine-induced immune responses against SARS-CoV-2, we analyzed antibody titres against various SARS-CoV-2 antigens and ACE2 binding inhibition against SARS-CoV-2 wild-type and variants of concern in samples from a large German population-based seroprevalence study (MuSPAD) who had received all currently available immunisation schemes. We found that homologous mRNA-based or heterologous prime-boost vaccination produced significantly higher antibody responses than vector-based homologous vaccination. Ad26.CoV2S.2 performance was particularly concerning with reduced titres and 91.7% of samples classified as non-responsive for ACE2 binding inhibition, suggesting that recipients require a booster mRNA vaccination. While mRNA vaccination induced a higher ratio of RBD- and S1-targeting antibodies, vector-based vaccines resulted in an increased proportion of S2-targeting antibodies. Given the role of RBD- and S1-specific antibodies in neutralizing SARS-CoV-2, their relative over-representation after mRNA vaccination may explain why these vaccines have increased efficacy compared to vector-based formulations. Previously infected individuals had a robust immune response once vaccinated, regardless of which vaccine they received, which could aid future dose allocation should shortages arise for certain manufacturers. Overall, both titres and ACE2 binding inhibition peaked approximately 28 days post-second vaccination and then decreased.


Subject(s)
Ad26COVS1/immunology , COVID-19/immunology , Immunity, Humoral/immunology , SARS-CoV-2/growth & development , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody Formation/immunology , Cross-Sectional Studies , Germany , Humans , Seroepidemiologic Studies , Spike Glycoprotein, Coronavirus/immunology , Vaccination/methods
4.
Nucleic Acids Res ; 37(22): 7429-40, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19854941

ABSTRACT

Multiple types of regulation are used by cells and viruses to control alternative splicing. In murine leukemia virus, accessibility of the 5' splice site (ss) is regulated by an upstream region, which can fold into a complex RNA stem-loop structure. The underlying sequence of the structure itself is negligible, since most of it could be functionally replaced by a simple heterologous RNA stem-loop preserving the wild-type splicing pattern. Increasing the RNA duplex formation between U1 snRNA and the 5'ss by a compensatory mutation in position +6 led to enhanced splicing. Interestingly, this mutation affects splicing only in the context of the secondary structure, arguing for a dynamic interplay between structure and primary 5'ss sequence. The reduced 5'ss accessibility could also be counteracted by recruiting a splicing enhancer domain via a modified MS2 phage coat protein to a single binding site at the tip of the simple RNA stem-loop. The mechanism of 5'ss attenuation was revealed using hyperstable U1 snRNA mutants, showing that restricted U1 snRNP access is the cause of retroviral alternative splicing.


Subject(s)
Alternative Splicing , Leukemia Virus, Murine/genetics , RNA Splice Sites , RNA, Small Nuclear/chemistry , Base Sequence , Cell Line , Humans , Leukemia Virus, Murine/physiology , Molecular Sequence Data , Nuclear Proteins/chemistry , Nucleic Acid Conformation , Protein Structure, Tertiary , Proviruses/genetics , Proviruses/physiology , RNA, Small Nuclear/metabolism , RNA-Binding Proteins/chemistry , Serine-Arginine Splicing Factors , Suppression, Genetic , Virus Replication
5.
J Plant Res ; 121(1): 125-31, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18060348

ABSTRACT

Abscisic acid (ABA) regulates stomatal closure in response to water loss. Here, we examined the competence of guard cells to synthesize ABA, using two Arabidopsis ABA biosynthetic enzymes. 35S pro::AtNCED3-GFP and AAO3-GFP were introduced into guard cells of broad bean leaves. AtNCED3-GFP expression was detected at the chloroplasts, whereas green fluorescent protein (GFP) and AAO3-GFP were in the cytosol. The stomatal aperture was decreased in AtNCED3-GFP- and AAO3-GFP-transformed guard cells. This indicated that ABA biosynthesis is stimulated by heterologous expression of AtNCED3 and Arabidopsis aldehyde oxidase 3 (AAO3) proteins, which both seem to be regulatory enzymes for ABA biosynthesis in these cells. Furthermore, stomatal closure by the expression of AtNCED3 and AAO3 suggested that the substrates of the enzymes are present and native ABA-biosynthesis enzymes are active in guard cells.


Subject(s)
Aldehyde Oxidase/metabolism , Arabidopsis Proteins/metabolism , Oxygenases/metabolism , Plant Stomata/metabolism , Vicia faba/metabolism , Abscisic Acid/biosynthesis , Aldehyde Oxidase/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Dioxygenases , Gene Expression Regulation, Plant , Oxygenases/genetics , Plant Proteins , Plant Stomata/cytology , Plants, Genetically Modified , Time Factors , Vicia faba/genetics
SELECTION OF CITATIONS
SEARCH DETAIL