Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
Add more filters










Publication year range
1.
Bioresour Technol ; 400: 130664, 2024 May.
Article in English | MEDLINE | ID: mdl-38583672

ABSTRACT

Synechocystis sp. PCC 6803 (Synechocystis) is a unicellular photosynthetic microorganism that has been used as a model for photo-biochemical research. It comprises a potential cell factory for the generation of valuable bioactive compounds, therapeutic proteins, and possibly biofuels. Fusion constructs of recombinant proteins with the CpcA α-subunit or CpcB ß-subunit of phycocyanin in Synechocystis have enabled true over-expression of several isoprenoid pathway enzymes and biopharmaceutical proteins to levels of 10-20 % of the total cellular protein. The present work employed the human interferon α-2 protein, as a study case of over-expression and downstream processing. It advanced the state of the art in the fusion constructs for protein overexpression technology by developing the bioresource for target protein separation from the fusion construct and isolation in substantially enriched or pure form. The work brings the cyanobacterial cell factory concept closer to meaningful commercial application for the photosynthetic production of useful recombinant proteins.


Subject(s)
Recombinant Proteins , Synechocystis , Synechocystis/metabolism , Humans , Recombinant Proteins/metabolism , Interferon-alpha/metabolism , Interferon alpha-2 , Protein Biosynthesis
2.
Photosynth Res ; 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37966575

ABSTRACT

Cyanobacteria are prokaryotic photosynthetic microorganisms that can generate, in addition to biomass, useful chemicals and proteins/enzymes, essentially from sunlight, carbon dioxide, and water. Selected aspects of cyanobacterial production (isoprenoids and high-value proteins) and scale-up methods suitable for product generation and downstream processing are addressed in this review. The work focuses on the challenge and promise of specialty chemicals and proteins production, with isoprenoid products and biopharma proteins as study cases, and the challenges encountered in the expression of recombinant proteins/enzymes, which underline the essence of synthetic biology with these microorganisms. Progress and the current state-of-the-art in these targeted topics are emphasized.

3.
Metab Eng ; 77: 174-187, 2023 05.
Article in English | MEDLINE | ID: mdl-37030607

ABSTRACT

Efforts to stably over-express recombinant proteins in cyanobacteria are hindered due to cellular proteasome activity that efficiently degrades foreign proteins. Recent work from this lab showed that a variety of exogenous genes from plants, humans, and bacteria can be successfully and stably over-expressed in cyanobacteria, as fusion constructs with the abundant ß-subunit of phycocyanin (the cpcB gene product) in quantities up to 10-15% of the total cell protein. The CpcB*P fusion proteins did not simply accumulate in a soluble free-floating form in the cell but, rather, they assembled as functional (α,ß*P)3CpcG1 heterohexameric light-harvesting phycocyanin antenna discs, where α is the CpcA α-subunit of phycocyanin, ß*P is the CpcB*P fusion protein, the asterisk denoting fusion, and CpcG1 is the 28.9 kDa phycocyanin disc linker polypeptide (Hidalgo Martinez et al., 2022). The present work showed that the CpcA α-subunit of phycocyanin and the CpcG1 28.9 kDa phycocyanin disc linker polypeptide can also successfully serve as leading sequences in functional heterohexameric (α*P,ß)3CpcG1 and (α,ß)3CpcG1*P fusion constructs that permit stable recombinant protein over-expression and accumulation. These were shown to form a residual light-harvesting antenna and to contribute to photosystem-II photochemistry in the cyanobacterial cells. The work suggested that cyanobacterial cells need phycocyanin for light absorption, photosynthesis, and survival and, therefore, may tolerate the presence of heterologous recombinant proteins, when the latter are in a fusion construct configuration with essential cellular proteins, e.g., phycocyanin, thus allowing their substantial and stable accumulation.


Subject(s)
Cyanobacteria , Phycobilisomes , Humans , Phycobilisomes/genetics , Phycobilisomes/metabolism , Phycocyanin/genetics , Phycocyanin/metabolism , Cyanobacteria/genetics , Cyanobacteria/metabolism , Peptides , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Plant Proteins/genetics
4.
ACS Synth Biol ; 11(3): 1152-1166, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35257571

ABSTRACT

Overexpression of heterologous proteins from plants, bacteria, and human as fusion constructs in cyanobacteria has been documented in the literature. Typically, the heterologous protein "P" of interest is expressed as a fusion with the abundant CpcB ß-subunit of phycocyanin (PC), which was placed in the leader sequence position. The working hypothesis for such overexpressions is that CpcB*P fusion proteins somehow accumulate in a soluble and stable form in the cytosol of the cyanobacteria, retaining the activity of the trailing heterologous "P" protein of interest. The present work revealed a substantially different and previously unobvious picture, comprising the following properties of the above-mentioned CpcB*P fusion constructs: (i) the CpcB*P proteins assemble as functional (α,ß*P)3CpcG heterohexameric discs, where α is the CpcA α-subunit of PC, ß*P is the CpcB*P fusion protein, the asterisk denotes fusion, and CpcG is the 28.9 kDa PC disc linker polypeptide CpcG1. (ii) The (α,ß*P)3CpcG1 complexes covalently bind one open tetrapyrrole bilin co-factor per α-subunit and two bilins per ß-subunit. (iii) The (α,ß*P)3CpcG1 heterohexameric discs are functionally attached to the Synechocystis allophycocyanin (AP) core cylinders and efficiently transfer excitation energy from the assembled (α,ß*P)3CpcG1 heterohexamer to the PSII reaction center, enhancing the rate of photochemical charge separation and electron transfer activity in this photosystem. (iv) In addition to the human interferon α-2 and tetanus toxin fragment C tested in this work, we have shown that enzymes such as the plant-origin isoprene synthase, ß-phellandrene synthase, geranyl diphosphate synthase, and geranyl linalool synthase are also overexpressed, while retaining their catalytic activity in the respective fusion construct configuration. (v) Folding models for the (α,ß*P)3CpcG1 heterohexameric discs showed the recombinant proteins P to be radially oriented with respect to the (α,ß)3 compact disc. Elucidation of the fusion construct configuration and function will pave the way for the rational design of fusion constructs harboring and overexpressing multiple proteins of scientific and commercial interest.


Subject(s)
Phycocyanin , Synechocystis , Phycocyanin/genetics , Protein Sorting Signals , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Synechocystis/metabolism
5.
Crit Rev Biotechnol ; 41(8): 1233-1256, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34130561

ABSTRACT

Domesticated microalgae hold great promise for the sustainable provision of various bioresources for human domestic and industrial consumption. Efforts to exploit their potential are far from being fully realized due to limitations in the know-how of microalgal engineering. The associated technologies are not as well developed as those for heterotrophic microbes, cyanobacteria, and plants. However, recent studies on microalgal metabolic engineering, genome editing, and synthetic biology have immensely helped to enhance transformation efficiencies and are bringing new insights into this field. Therefore, this article, summarizes recent developments in microalgal biotechnology and examines the prospects for generating specialty and commodity products through the processes of metabolic engineering and synthetic biology. After a brief examination of empirical engineering methods and vector design, this article focuses on quantitative transformation cassette design, elaborates on target editing methods and emerging digital design of algal cellular metabolism to arrive at high yields of valuable products. These advances have enabled a transition of manners in microalgal engineering from single-gene and enzyme-based metabolic engineering to systems-level precision engineering, from cells created with genetically modified (GM) tags to that without GM tags, and ultimately from proof of concept to tangible industrial applications. Finally, future trends are proposed in microalgal engineering, aiming to establish individualized transformation systems in newly identified species for strain-specific specialty and commodity products, while developing sophisticated universal toolkits in model algal species.


Subject(s)
Cyanobacteria , Microalgae , Biotechnology , Cyanobacteria/genetics , Gene Editing , Humans , Metabolic Engineering , Microalgae/genetics , Synthetic Biology
6.
ACS Synth Biol ; 10(4): 810-825, 2021 04 16.
Article in English | MEDLINE | ID: mdl-33684287

ABSTRACT

The living cell possesses extraordinary molecular and biochemical mechanisms by which to recognize and efficiently remove foreign, damaged, or denatured proteins. This essential function has been a barrier to the overexpression of recombinant proteins in most expression systems. A notable exception is the overexpression in E. coli of recombinant proteins, most of which, however, end-up as "inclusion bodies", i.e., cytoplasmic aggregates of proteins that are inaccessible to the cell's proteasome. "Fusion constructs as protein overexpression vectors" proved to be unparalleled in their ability to cause substantial accumulation of recombinant proteins from plants, animals, and bacteria, as soluble proteins in unicellular cyanobacteria. Recombinant protein levels in the range of 10-20% of the total cellular protein can be achieved. The present work investigated this unique property in the context of recombinant protein stability in Synechocystis sp. PCC 6803 by developing and applying an in vivo cellular tobacco etch virus cleavage system with the objective of separating the target heterologous proteins from their fusion leader sequences. The work provides new insights about the overexpression, cellular stability, and exploitation of transgenes with commercial interest, highly expressed in a cyanobacterial biofactory. The results support the notion that eukaryotic plant- and animal-origin recombinant proteins are unstable, when free in the cyanobacterial cytosol but stable when in a fusion configuration with a highly expressed cyanobacterial native or heterologous protein. Included in this analysis are recombinant proteins of the plant isoprenoid biosynthetic pathway (isoprene synthase, ß-phellandrene synthase, geranyl diphosphate synthase), the human interferon protein, as well as prokaryotic proteins (tetanus toxin fragment C and the antibiotic resistance genes kanamycin and chloramphenicol). The future success of synthetic biology approaches with cyanobacteria and other systems would require overexpression of pathway enzymes to attain product volume, and the work reported in this paper sets the foundation for such recombinant pathway enzyme overexpression.


Subject(s)
Cyanobacteria/metabolism , Endopeptidases/metabolism , Recombinant Proteins/metabolism , Cyanobacteria/genetics , Endopeptidases/genetics , Recombinant Proteins/genetics , Synechocystis/genetics , Synechocystis/metabolism
7.
Nat Commun ; 12(1): 679, 2021 01 29.
Article in English | MEDLINE | ID: mdl-33514722

ABSTRACT

Diverse algae of the red lineage possess chlorophyll a-binding proteins termed LHCR, comprising the PSI light-harvesting system, which represent an ancient antenna form that evolved in red algae and was acquired through secondary endosymbiosis. However, the function and regulation of LHCR complexes remain obscure. Here we describe isolation of a Nannochloropsis oceanica LHCR mutant, named hlr1, which exhibits a greater tolerance to high-light (HL) stress compared to the wild type. We show that increased tolerance to HL of the mutant can be attributed to alterations in PSI, making it less prone to ROS production, thereby limiting oxidative damage and favoring growth in HL. HLR1 deficiency attenuates PSI light-harvesting capacity and growth of the mutant under light-limiting conditions. We conclude that HLR1, a member of a conserved and broadly distributed clade of LHCR proteins, plays a pivotal role in a dynamic balancing act between photoprotection and efficient light harvesting for photosynthesis.


Subject(s)
Adaptation, Physiological/genetics , Chlorophyll Binding Proteins/metabolism , Light/adverse effects , Photosystem I Protein Complex/metabolism , Stramenopiles/physiology , Adaptation, Physiological/radiation effects , Chlorophyll A/metabolism , Chlorophyll Binding Proteins/genetics , Chlorophyll Binding Proteins/isolation & purification , Mutation , Photosynthesis/genetics , Photosynthesis/radiation effects , Photosystem I Protein Complex/genetics , Stramenopiles/radiation effects
8.
Planta ; 251(4): 92, 2020 Apr 03.
Article in English | MEDLINE | ID: mdl-32242247

ABSTRACT

MAIN CONCLUSION: The role of six alkaloid biosynthesis genes in the process of nicotine accumulation in tobacco was investigated. Downregulation of ornithine decarboxylase, arginine decarboxylase, and aspartate oxidase resulted in viable plants with a significantly lower nicotine content. Attenuation of nicotine accumulation in Nicotiana tabacum was addressed upon the application of RNAi technologies. The approach entailed a downregulation in the expression of six different alkaloid biosynthesis genes encoding upstream enzymes that are thought to function in the pathway of alkaloid and nicotine biosynthesis. Nine different RNAi constructs were designed to lower the expression level of the genes that encode the enzymes arginine decarboxylase, agmatine deiminase, aspartate oxidase, arginase, ornithine decarboxylase, and SAM synthase. Agrobacterium-based transformation of tobacco leaves was applied, and upon kanamycin selection, T0 and subsequently T1 generation seeds were produced. Mature T1 plants in the greenhouse were topped to prevent flowering and leaf nos. 3 and 4 below the topping point were tested for transcript levels and product accumulation. Down-regulation in arginine decarboxylase, aspartate oxidase, and ornithine decarboxylase consistently resulted in lower levels of nicotine in the leaves of the corresponding plants. Transformants with the aspartate oxidase RNAi construct showed the lowest nicotine level in the leaves, which varied from below the limit of quantification (20 µg per g dry leaf weight) to 1.3 mg per g dry leaf weight. The amount of putrescine, the main polyamine related to nicotine biosynthesis, showed a qualitative correlation with the nicotine content in the arginine decarboxylase and ornithine decarboxylase RNAi-expressing transformants. A putative early senescence phenotype and lower viability of the older leaves was observed in some of the transformant lines. The results are discussed in terms of the role of the above-mentioned genes in the alkaloid biosynthetic pathway and may serve to guide efforts to attenuate nicotine content in tobacco leaves.


Subject(s)
Alkaloids/biosynthesis , Alkaloids/genetics , Nicotiana/genetics , Nicotine/biosynthesis , Nicotine/genetics , Amino Acid Oxidoreductases/genetics , Biosynthetic Pathways/genetics , Carboxy-Lyases/genetics , Gene Expression Regulation, Plant , Ornithine Decarboxylase/genetics , Plant Leaves/metabolism , Plants, Genetically Modified , Polyamines/metabolism , Putrescine/metabolism , Seeds
9.
Front Plant Sci ; 11: 237, 2020.
Article in English | MEDLINE | ID: mdl-32194609

ABSTRACT

Efforts to express human therapeutic proteins in photosynthetic organisms have been described in the literature. Regarding microalgae, most of the research entailed a heterologous transformation of the chloroplast, but transformant cells failed to accumulate the desired recombinant proteins in high quantity. The present work provides methods and DNA construct formulations for over-expressing in photosynthetic cyanobacteria, at the protein level, human-origin bio-pharmaceutical and bio-therapeutic proteins. Proof-of-concept evidence is provided for the design and reduction to practice of "fusion constructs as protein overexpression vectors" for the generation of the bio-therapeutic protein interferon alpha-2 (IFN). IFN is a member of the Type I interferon cytokine family, well-known for its antiviral and anti-proliferative functions. Fusion construct formulations enabled accumulation of IFN up to 12% of total cellular protein in soluble form. In addition, the work reports on the isolation and purification of the fusion IFN protein and preliminary verification of its antiviral activity. Combining the expression and purification protocols developed here, it is possible to produce fairly large quantities of interferon in these photosynthetic microorganisms, generated from sunlight, CO2, and H2O.

10.
Plant Physiol ; 181(3): 1257-1276, 2019 11.
Article in English | MEDLINE | ID: mdl-31467163

ABSTRACT

The family of chloroplast ALBINO3 (ALB3) proteins function in the insertion and assembly of thylakoid membrane protein complexes. Loss of ALB3b in the marine diatom Phaeodactylum tricornutum leads to a striking change of cell color from the normal brown to green. A 75% decrease of the main fucoxanthin-chlorophyll a/c-binding proteins was identified in the alb3b strains as the cause of changes in the spectral properties of the mutant cells. The alb3b lines exhibit a truncated light-harvesting antenna phenotype with reduced amounts of light-harvesting pigments and require a higher light intensity for saturation of photosynthesis. Accumulation of photoprotective pigments and light-harvesting complex stress-related proteins was not negatively affected in the mutant strains, but still the capacity for nonphotochemical quenching was lower compared with the wild type. In plants and green algae, ALB3 proteins interact with members of the chloroplast signal recognition particle pathway through a Lys-rich C-terminal domain. A novel conserved C-terminal domain was identified in diatoms and other stramenopiles, questioning if ALB3b proteins have the same interaction partners as their plant/green algae homologs.


Subject(s)
Diatoms/metabolism , Light-Harvesting Protein Complexes/metabolism , Photosynthesis/genetics , Photosynthesis/physiology , Pigments, Biological/metabolism , Plant Proteins/metabolism
11.
Biotechnol Bioeng ; 116(8): 2041-2051, 2019 08.
Article in English | MEDLINE | ID: mdl-30963538

ABSTRACT

The work aims to convert the secondary slow metabolism of the terpenoid biosynthetic pathway into a primary activity in cyanobacteria and to generate heterologous products using these photosynthetic microorganisms as cell factories. Case study is the production of the 10-carbon monoterpene ß-phellandrene (PHL) in Synechocystis sp. PCC 6803 (Synechocystis). Barriers to this objective include the slow catalytic activity of the terpenoid metabolism enzymes that limit rates and yield of product synthesis and accumulation. "Fusion constructs as protein overexpression vectors" were applied in the overexpression of the geranyl diphosphate synthase (GPPS) and ß-phellandrene synthase (PHLS) genes, causing accumulation of GPPS up to 4% and PHLS up to 10% of the total cellular protein. Such GPPS and PHLS protein overexpression compensated for their slow catalytic activity and enabled transformant Synechocystis to constitutively generate 24 mg of PHL per g biomass (2.4% PHL:biomass, w-w), a substantial improvement over earlier yields. The work showed that a systematic overexpression, at the protein level, of the terpenoid biosynthetic pathway genes is a promising approach to achieving high yields of prenyl product biosynthesis, on the way to exploiting the cellular terpenoid metabolism for commodity product generation.


Subject(s)
Cyclohexane Monoterpenes/metabolism , Synechocystis/metabolism , Biosynthetic Pathways , Biotechnology , Metabolic Engineering , Photosynthesis , Synechocystis/genetics , Terpenes/metabolism
12.
Planta ; 248(4): 933-946, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29974209

ABSTRACT

MAIN CONCLUSION: Synechocystis (a cyanobacterium) was employed as an alternative host for the production of plant essential oil constituents. ß-Phellandrene synthase (PHLS) genes from different plants, when expressed in Synechocystis, enabled synthesis of variable monoterpene hydrocarbon blends, converting Synechocystis into a cell factory that photosynthesized and released useful products. Monoterpene synthases are secondary metabolism enzymes that catalyze the generation of essential oil constituents in terrestrial plants. Essential oils, including monoterpene hydrocarbons, are of interest for their commercial application and value. Therefore, heterologous expression of monoterpene synthases for high-capacity essential oil production in photosynthetic microorganism transformants is of current interest. In the present work, the cyanobacterium Synechocystsis PCC 6803 was employed as an alternative host for the production of plant essential oil constituents. As a case study, ß-phellandrene synthase (PHLS) genes from different plants were heterologously expressed in Synechocystis. Genomic integration of individual PHLS-encoding sequences endowed Synechocystis with constitutive monoterpene hydrocarbons generation, occurring concomitant with photosynthesis and cell growth. Specifically, the ß-phellandrene synthase from Lavandula angustifolia (lavender), Solanum lycopersicum (tomato), Pinus banksiana (pine), Picea sitchensis (Sitka spruce) and Abies grandis (grand fir) were active in Synechocystis transformants but, instead of a single product, they generated a blend of terpene hydrocarbons comprising ß-phellandrene, α-phellandrene, ß-myrcene, ß-pinene, and δ-carene with variable percentage ratios ranging from < 10 to > 90% in different product combinations and proportions. Our results suggested that PHLS enzyme conformation and function depends on the cytosolic environment in which they reside, with the biochemical properties of the latter causing catalytic deviations from the products naturally observed in the corresponding gene-encoding plants, giving rise to the terpene hydrocarbon blends described in this work. These findings may have commercial application in the generation of designer essential oil blends and will further assist the development of heterologous cyanobacterial platforms for the generation of desired monoterpene hydrocarbon products.


Subject(s)
Monoterpenes/metabolism , Oils, Volatile/metabolism , Plant Oils/metabolism , Plant Proteins/metabolism , Synechocystis/metabolism , Abies/enzymology , Abies/genetics , Acyclic Monoterpenes , Bicyclic Monoterpenes , Bridged Bicyclo Compounds/metabolism , Cyclohexane Monoterpenes , Gene Expression , Intramolecular Lyases/genetics , Intramolecular Lyases/metabolism , Lavandula/enzymology , Lavandula/genetics , Solanum lycopersicum/enzymology , Solanum lycopersicum/genetics , Metabolic Engineering , Photosynthesis , Picea/enzymology , Picea/genetics , Pinus/enzymology , Pinus/genetics , Plant Proteins/genetics , Recombinant Fusion Proteins , Synechocystis/genetics , Transgenes
13.
Appl Microbiol Biotechnol ; 102(15): 6451-6458, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29802477

ABSTRACT

Heterologous cyanobacterial production of isoprene (C5H8) presents an opportunity to develop renewable resources for fuel and industrial chemicals. Isoprene can be generated photosynthetically in these microorganisms from dimethylallyl-diphosphate (DMAPP) by the recombinant enzyme isoprene synthase (ISPS), as a transgenic product of the isoprenoid biosynthetic pathway. The present work sought to combine recent enhancements in the cellular level of reactant (DMAPP) and enzyme (ISPS), as a means in the further development of this technology. This objective was approached upon the heterologous overexpression of fni, an isopentenyl isomerase from Streptococcus pneumoniae, which increased the amount of the DMAPP reactant at the expense of its isomer, isopentenyl-diphosphate (IPP), in the cells. In addition, the cellular concentration of ISPS was substantially enhanced upon expression of the ISPS gene, as a fusion construct with the highly expressed in cyanobacteria cpcB gene, encoding the abundant ß-subunit of phycocyanin. Synergy between these two modifications, i.e., enhancement in DMAPP substrate availability and enhancement in the concentration of the ISPS enzyme, improved the isoprene-to-biomass production ratio in cyanobacteria from 0.2:1 mg g-1 (w:w), attained with the ISPS transgene alone, up to 12.3:1 mg g-1 (w:w), measured when the combined two modifications were applied to the same cell. This is the highest verifiable yield of heterologous photosynthetic isoprene production reported so far. Findings in this work constitute a step forward in the development of the cyanobacterial biotechnology for isoprene production.


Subject(s)
Cyanobacteria/metabolism , Hemiterpenes/metabolism , Industrial Microbiology , Alkyl and Aryl Transferases/genetics , Alkyl and Aryl Transferases/metabolism , Biotechnology , Butadienes , Cyanobacteria/genetics , Hemiterpenes/biosynthesis , Pentanes , Streptococcus pneumoniae/enzymology , Streptococcus pneumoniae/genetics
14.
FEBS Lett ; 592(12): 2059-2069, 2018 06.
Article in English | MEDLINE | ID: mdl-29689603

ABSTRACT

The renewable production of isoprene (Isp) hydrocarbons, to serve as fuel and synthetic chemistry feedstock, has attracted interest in the field recently. Isp (C5 H8 ) is naturally produced from sunlight, CO2 and H2 O photosynthetically in terrestrial plant chloroplasts via the terpenoid biosynthetic pathway and emitted in the atmosphere as a response to heat stress. Efforts to institute a high capacity continuous and renewable process have included heterologous expression of the Isp synthesis pathway in photosynthetic microorganisms. This review examines the premise and promise emanating from this relatively new research effort. Also examined are the metabolic engineering approaches applied in the quest of renewable Isp hydrocarbons production, the progress achieved so far, and barriers encountered along the way.


Subject(s)
Cyanobacteria/genetics , Hemiterpenes/biosynthesis , Metabolic Engineering/methods , Biosynthetic Pathways , Butadienes , Cyanobacteria/metabolism , Industrial Microbiology , Synthetic Biology/methods
15.
Planta ; 248(1): 139-154, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29623472

ABSTRACT

MAIN CONCLUSION: Downregulation in the expression of the signal recognition particle 43 (SRP43) gene in tobacco conferred a truncated photosynthetic light-harvesting antenna (TLA property), and resulted in plants with a greater leaf-to-stem ratio, improved photosynthetic productivity and canopy biomass accumulation under high-density cultivation conditions. Evolution of sizable arrays of light-harvesting antennae in all photosynthetic systems confers a survival advantage for the organism in the wild, where sunlight is often the growth-limiting factor. In crop monocultures, however, this property is strongly counterproductive, when growth takes place under direct and excess sunlight. The large arrays of light-harvesting antennae in crop plants cause the surface of the canopies to over-absorb solar irradiance, far in excess of what is needed to saturate photosynthesis and forcing them to engage in wasteful dissipation of the excess energy. Evidence in this work showed that downregulation by RNA-interference approaches of the Nicotiana tabacum signal recognition particle 43 (SRP43), a nuclear gene encoding a chloroplast-localized component of the photosynthetic light-harvesting assembly pathway, caused a decrease in the light-harvesting antenna size of the photosystems, a corresponding increase in the photosynthetic productivity of chlorophyll in the leaves, and improved tobacco plant canopy biomass accumulation under high-density cultivation conditions. Importantly, the resulting TLA transgenic plants had a substantially greater leaf-to-stem biomass ratio, compared to those of the wild type, grown under identical agronomic conditions. The results are discussed in terms of the potential benefit that could accrue to agriculture upon application of the TLA-technology to crop plants, entailing higher density planting with plants having a greater biomass and leaf-to-stem ratio, translating into greater crop yields per plant with canopies in a novel agronomic configuration.


Subject(s)
Chloroplast Proteins/metabolism , Light-Harvesting Protein Complexes/metabolism , Nicotiana/metabolism , Plant Leaves/anatomy & histology , Plant Stems/anatomy & histology , Signal Recognition Particle/metabolism , Biomass , Chloroplast Proteins/genetics , Down-Regulation , Photosynthesis , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , Signal Recognition Particle/genetics , Signal Recognition Particle/physiology , Nicotiana/anatomy & histology , Nicotiana/genetics , Nicotiana/growth & development
16.
ACS Synth Biol ; 7(3): 912-921, 2018 03 16.
Article in English | MEDLINE | ID: mdl-29397685

ABSTRACT

Fusion constructs as protein overexpression vectors proved to be critical in the heterologous expression of terpene synthases in cyanobacteria. The concept was recently applied to the heterologous overexpression of the ß-phellandrene synthase (ß- PHLS) from plants, fused to the highly expressed endogenous cpcB gene encoding the ß-subunit of phycocyanin. Overexpressed CpcB*PHLS fusion proteins enhanced the heterologous yield of C10H16 ß-phellandrene hydrocarbons production in Synechocystis. This work extended the concept of fusion constructs as protein overexpression vectors by showing that highly expressed heterologous genes could also serve as leader sequences for protein overexpression in cyanobacteria. Examined are the kanamycin nptI and chloramphenicol cmR resistance cassettes, both of which are overexpressed in Synechocystis. Evidence showed a dual purpose of the nptI gene, as a leader sequence fused to a heterologous geranyl-diphosphate synthase ( GPPS), promoting its expression, while at the same time serving as a selectable marker for the screening of transformants. The work further showed that enhanced GPPS expression increased the yield of ß-phellandrene in Synechocystis transformants harboring the ß- PHLS gene. Moreover, the research evaluated the expression efficacy of a DNA fragment comprising 87 nucleotides from the 5' end of the cmR gene in fusion with the GPPS gene. This short fusion construct substantially increased the intracellular geranyl-diphosphate synthase level, suggesting that "short-stretch" cmR leader sequences can be used to drive a higher expression level of heterologous biosynthetic genes, while avoiding undesirable internal recombinations, as these sequences are shorter than the threshold of 200 bp, commonly assumed to be the threshold of high efficiency recombinations.


Subject(s)
Alkyl and Aryl Transferases/metabolism , Cyclohexenes/metabolism , Monoterpenes/metabolism , Protein Sorting Signals , Synechocystis/enzymology , Bacterial Proteins/metabolism , Biomass , Cyclohexane Monoterpenes , DNA, Bacterial/genetics , Erythritol/analogs & derivatives , Erythritol/metabolism , Nucleotides/genetics , Operon/genetics , Photosynthesis , Plasmids/metabolism , Recombination, Genetic/genetics , Substrate Specificity , Synechocystis/growth & development , Transformation, Genetic , Transgenes
17.
J Exp Bot ; 69(5): 1147-1158, 2018 02 23.
Article in English | MEDLINE | ID: mdl-29300952

ABSTRACT

Nuclear-encoded light-harvesting chlorophyll- and carotenoid-binding proteins (LHCPs) are imported into the chloroplast and transported across the stroma to thylakoid membrane assembly sites by the chloroplast signal recognition particle (CpSRP) pathway. The LHCP translocation defect (LTD) protein is essential for the delivery of imported LHCPs to the CpSRP pathway in Arabidopsis. However, the function of the LTD protein in Chlamydomonas reinhardtii has not been investigated. Here, we generated a C. reinhardtii ltd (Crltd) knockout mutant by using CRISPR-Cas9, a new target-specific knockout technology. The Crltd1 mutant showed a low chlorophyll content per cell with an unusual increase in appressed thylakoid membranes and enlarged cytosolic vacuoles. Profiling of thylakoid membrane proteins in the Crltd1 mutant showed a more severe reduction in the levels of photosystem I (PSI) core proteins and absence of functional LHCI compared with those of photosystem II, resulting in a much smaller PSI pool size and diminished chlorophyll antenna size. The lack of CrLTD did not prevent photoautotrophic growth of the cells. These results are substantially different from those for Arabidopsis ltd null mutant, indicating LTD function in LHCP delivery and PSI assembly may not be as stringent in C. reinhardtii as it is in higher plants.


Subject(s)
Algal Proteins/genetics , Chlamydomonas reinhardtii/genetics , Chloroplast Proteins/genetics , Light-Harvesting Protein Complexes/genetics , Photosystem I Protein Complex/genetics , Sequence Deletion , Algal Proteins/metabolism , Base Sequence , Chlamydomonas reinhardtii/metabolism , Chloroplast Proteins/metabolism , DNA, Plant/analysis , Light-Harvesting Protein Complexes/metabolism , Photosystem I Protein Complex/metabolism
18.
ACS Synth Biol ; 6(12): 2281-2292, 2017 12 15.
Article in English | MEDLINE | ID: mdl-28858481

ABSTRACT

Efforts to heterologously produce quantities of isoprene hydrocarbons (C5H8) renewably from CO2 and H2O through the photosynthesis of cyanobacteria face barriers, including low levels of recombinant enzyme accumulation compounded by their slow innate catalytic activity. The present work sought to alleviate the "expression level" barrier upon placing the isoprene synthase (IspS) enzyme in different fusion configurations with the cpcB protein, the highly expressed ß-subunit of phycocyanin. Different cpcB*IspS fusion constructs were made, distinguished by the absence or presence of linker amino acids between the two proteins. Composition of linker amino acids was variable with lengths of 7, 10, 16, and 65 amino acids designed to test for optimal activity of the IspS through spatial positioning between the cpcB and IspS. Results showed that fusion constructs with the highly expressed cpcB gene, as the leader sequence, improved transgene expression in the range of 61 to 275-fold over what was measured with the unfused IspS control. However, the specific activity of the IspS enzyme was attenuated in all fusion transformants, possibly because of allosteric effects exerted by the leader cpcB fusion protein. This inhibition varied depending on the nature of the linker amino acids between the cpcB and IspS proteins. In terms of isoprene production, the results further showed a trade-off between specific activity and transgenic enzyme accumulation. For example, the cpcB*L7*IspS strain showed only about 10% the isoprene synthase specific-activity of the unfused cpcB-IspS control, but it accumulated 254-fold more IspS enzyme. The latter more than countered the slower specific activity and made the cpcB*L7*IspS transformant the best isoprene producing strain in this work. Isoprene to biomass yield ratios improved from 0.2 mg g-1 in the unfused cpcB-IspS control to 5.4 mg g-1 in the cpcB*L7*IspS strain, a 27-fold improvement.


Subject(s)
Alkyl and Aryl Transferases , Bacterial Proteins , Protein Engineering , Recombinant Fusion Proteins , Synechocystis , Alkyl and Aryl Transferases/biosynthesis , Alkyl and Aryl Transferases/genetics , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Synechocystis/enzymology , Synechocystis/genetics , Terpenes/metabolism
19.
Planta ; 245(5): 1009-1020, 2017 May.
Article in English | MEDLINE | ID: mdl-28188423

ABSTRACT

MAIN CONCLUSION: Evidence shows that decreasing the light-harvesting antenna size of the photosystems in tobacco helps to increase the photosynthetic productivity and plant canopy biomass accumulation under high-density cultivation conditions. Decreasing, or truncating, the chlorophyll antenna size of the photosystems can theoretically improve photosynthetic solar energy conversion efficiency and productivity in mass cultures of algae or plants by up to threefold. A Truncated Light-harvesting chlorophyll Antenna size (TLA), in all classes of photosynthetic organisms, would help to alleviate excess absorption of sunlight and the ensuing wasteful non-photochemical dissipation of excitation energy. Thus, solar-to-biomass energy conversion efficiency and photosynthetic productivity in high-density cultures can be increased. Applicability of the TLA concept was previously shown in green microalgae and cyanobacteria, but it has not yet been demonstrated in crop plants. In this work, the TLA concept was applied in high-density tobacco canopies. The work showed a 25% improvement in stem and leaf biomass accumulation for the TLA tobacco canopies over that measured with their wild-type counterparts grown under the same ambient conditions. Distinct canopy appearance differences are described between the TLA and wild type tobacco plants. Findings are discussed in terms of concept application to crop plants, leading to significant improvements in agronomy, agricultural productivity, and application of photosynthesis for the generation of commodity products in crop leaves.


Subject(s)
Light-Harvesting Protein Complexes/genetics , Nicotiana/genetics , Biomass , Chlorophyll/metabolism , Light-Harvesting Protein Complexes/metabolism , Photosynthesis , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/radiation effects , Sunlight , Nicotiana/growth & development , Nicotiana/metabolism , Nicotiana/radiation effects
20.
Appl Microbiol Biotechnol ; 101(7): 2791-2800, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28062974

ABSTRACT

Cyanobacteria are industrially robust photosynthetic microorganisms that can be genetically programmed to synthesize commodity products for domestic and industrial consumption. In the present work, Synechocystis was endowed with the synthesis of the plant secondary metabolite geranyllinalool, a diterpene alcohol of commercial interest. Total average yields of 360 µg of geranyllinalool per gram of dry cell weight were obtained in the course of a 48-h cultivation period. Geranyllinalool was primarily sequestered inside the transformant cells, corresponding to 60-70% of the total heterologous product, instead of being entirely exuded, as the case is with shorter heterologous terpene hydrocarbons. Extraction of geranyllinalool necessitated disruption of the cells in order to release and isolate this chemical product. Moreover, geranyllinalool accumulation in the cells caused a mild inhibitory effect on cell fitness and biomass growth rate, such that the duplication time of Synechocystis transformants was 1.4-fold longer than that of the control. The remaining 30-40% of the geranyllinalool product was found to float on the surface of sealed transformant cultures, where it was siphoned off by applying a hydrophobic overlayer, with no need to disrupt the cells in this case. Concluding, the work extended efforts to heterologously produce terpene and terpenol products in cyanobacteria, and addressed possibilities and constrains inherent to this production system.


Subject(s)
Diterpenes/metabolism , Metabolic Engineering/methods , Synechocystis/genetics , Acyclic Monoterpenes , Biomass , Diterpenes/chemistry , Synechocystis/chemistry , Synechocystis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...