Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Sci Transl Med ; 13(581)2021 02 17.
Article in English | MEDLINE | ID: mdl-33597264

ABSTRACT

The accumulation of DNA and nuclear components in blood and their recognition by autoantibodies play a central role in the pathophysiology of systemic lupus erythematosus (SLE). Despite the efforts, the sources of circulating autoantigens in SLE are still unclear. Here, we show that in SLE, platelets release mitochondrial DNA, the majority of which is associated with the extracellular mitochondrial organelle. Mitochondrial release in patients with SLE correlates with platelet degranulation. This process requires the stimulation of platelet FcγRIIA, a receptor for immune complexes. Because mice lack FcγRIIA and murine platelets are completely devoid of receptor capable of binding IgG-containing immune complexes, we used transgenic mice expressing FcγRIIA for our in vivo investigations. FcγRIIA expression in lupus-prone mice led to the recruitment of platelets in kidneys and to the release of mitochondria in vivo. Using a reporter mouse with red fluorescent protein targeted to the mitochondrion, we confirmed platelets as a source of extracellular mitochondria driven by FcγRIIA and its cosignaling by the fibrinogen receptor α2bß3 in vivo. These findings suggest that platelets might be a key source of mitochondrial antigens in SLE and might be a therapeutic target for treating SLE.


Subject(s)
Blood Platelets , Lupus Erythematosus, Systemic , Animals , Antigen-Antibody Complex , Autoantibodies/metabolism , Blood Platelets/metabolism , Humans , Lupus Erythematosus, Systemic/metabolism , Mice , Mitochondria , Receptors, IgG/metabolism
2.
Blood ; 136(25): 2933-2945, 2020 12 17.
Article in English | MEDLINE | ID: mdl-33331924

ABSTRACT

Systemic lupus erythematosus (SLE) is an autoimmune inflammatory disease characterized by deposits of immune complexes (ICs) in organs and tissues. The expression of FcγRIIA by human platelets, which is their unique receptor for immunoglobulin G antibodies, positions them to ideally respond to circulating ICs. Whereas chronic platelet activation and thrombosis are well-recognized features of human SLE, the exact mechanisms underlying platelet activation in SLE remain unknown. Here, we evaluated the involvement of FcγRIIA in the course of SLE and platelet activation. In patients with SLE, levels of ICs are associated with platelet activation. Because FcγRIIA is absent in mice, and murine platelets do not respond to ICs in any existing mouse model of SLE, we introduced the FcγRIIA (FCGR2A) transgene into the NZB/NZWF1 mouse model of SLE. In mice, FcγRIIA expression by bone marrow cells severely aggravated lupus nephritis and accelerated death. Lupus onset initiated major changes to the platelet transcriptome, both in FcγRIIA-expressing and nonexpressing mice, but enrichment for type I interferon response gene changes was specifically observed in the FcγRIIA mice. Moreover, circulating platelets were degranulated and were found to interact with neutrophils in FcγRIIA-expressing lupus mice. FcγRIIA expression in lupus mice also led to thrombosis in lungs and kidneys. The model recapitulates hallmarks of human SLE and can be used to identify contributions of different cellular lineages in the manifestations of SLE. The study further reveals a role for FcγRIIA in nephritis and in platelet activation in SLE.


Subject(s)
Autoantibodies/immunology , Blood Platelets/immunology , Immunoglobulin G/immunology , Lupus Nephritis/immunology , Platelet Activation/immunology , Receptors, IgG/immunology , Animals , Autoantibodies/genetics , Blood Platelets/pathology , Disease Models, Animal , Immunoglobulin G/genetics , Lupus Nephritis/genetics , Lupus Nephritis/pathology , Mice , Mice, Transgenic , Platelet Activation/genetics , Receptors, IgG/genetics
3.
Arterioscler Thromb Vasc Biol ; 40(4): 929-942, 2020 04.
Article in English | MEDLINE | ID: mdl-32102567

ABSTRACT

OBJECTIVE: The lymphatic system is a circulatory system that unidirectionally drains the interstitial tissue fluid back to blood circulation. Although lymph is utilized by leukocytes for immune surveillance, it remains inaccessible to platelets and erythrocytes. Activated cells release submicron extracellular vesicles (EV) that transport molecules from the donor cell. In rheumatoid arthritis, EV accumulate in the joint where they can interact with numerous cellular lineages. However, whether EV can exit the inflamed tissue to recirculate is unknown. Here, we investigated whether vascular leakage that occurs during inflammation could favor EV access to the lymphatic system. Approach and Results: Using an in vivo model of autoimmune inflammatory arthritis, we show that there is an influx of platelet EV, but not EV from erythrocytes or leukocytes, in joint-draining lymph. In contrast to blood platelet EV, lymph platelet EV lacked mitochondrial organelles and failed to promote coagulation. Platelet EV influx in lymph was consistent with joint vascular leakage and implicated the fibrinogen receptor α2bß3 and platelet-derived serotonin. CONCLUSIONS: These findings show that platelets can disseminate their EV in fluid that is inaccessible to platelets and beyond the joint in this disease.


Subject(s)
Arthritis, Rheumatoid/physiopathology , Blood Platelets/physiology , Extracellular Vesicles/physiology , Lymph/physiology , Animals , Blood Platelets/metabolism , Capillary Permeability , Disease Models, Animal , Mice, Inbred C57BL , Serotonin/metabolism
4.
Circ Res ; 125(1): 43-52, 2019 06 21.
Article in English | MEDLINE | ID: mdl-31219742

ABSTRACT

RATIONALE: Extracellular vesicles, including microvesicles, are increasingly recognized as important mediators in cardiovascular disease. The cargo and surface proteins they carry are considered to define their biological activity, including their inflammatory properties. Monocyte to endothelial cell signaling is a prerequisite for the propagation of inflammatory responses. However, the contribution of microvesicles in this process is poorly understood. OBJECTIVE: To elucidate the mechanisms by which microvesicles derived from activated monocytic cells exert inflammatory effects on endothelial cells. METHODS AND RESULTS: LPS (lipopolysaccharide)-stimulated monocytic cells release free mitochondria and microvesicles with mitochondrial content as demonstrated by flow cytometry, quantitative polymerase chain reaction, Western Blot, and transmission electron microscopy. Using RNAseq analysis and quantitative reverse transcription-polymerase chain reaction, we demonstrated that both mitochondria directly isolated from and microvesicles released by LPS-activated monocytic cells, as well as circulating microvesicles isolated from volunteers receiving low-dose LPS-injections, induce type I IFN (interferon), and TNF (tumor necrosis factor) responses in endothelial cells. Depletion of free mitochondria significantly reduced the ability of these microvesicles to induce type I IFN and TNF-dependent genes. We identified mitochondria-associated TNFα and RNA from stressed mitochondria as major inducers of these responses. Finally, we demonstrated that the proinflammatory potential of microvesicles and directly isolated mitochondria were drastically reduced when they were derived from monocytic cells with nonrespiring mitochondria or monocytic cells cultured in the presence of pyruvate or the mitochondrial reactive oxygen species scavenger MitoTEMPO. CONCLUSIONS: Mitochondria and mitochondria embedded in microvesicles constitute a major subset of extracellular vesicles released by activated monocytes, and their proinflammatory activity on endothelial cells is determined by the activation status of their parental cells. Thus, mitochondria may represent critical intercellular mediators in cardiovascular disease and other inflammatory settings associated with type I IFN and TNF signaling.


Subject(s)
Endothelial Cells/metabolism , Extracellular Vesicles/metabolism , Interferon Type I/biosynthesis , Mitochondria/metabolism , Monocytes/metabolism , Tumor Necrosis Factor-alpha/biosynthesis , Adult , Cells, Cultured , Endothelial Cells/drug effects , Endothelial Cells/immunology , Extracellular Vesicles/drug effects , Extracellular Vesicles/immunology , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/immunology , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Lipopolysaccharides/toxicity , Male , Mitochondria/drug effects , Mitochondria/immunology , Monocytes/drug effects , Monocytes/immunology , Young Adult
5.
Sci Rep ; 9(1): 4530, 2019 03 14.
Article in English | MEDLINE | ID: mdl-30872710

ABSTRACT

Mitochondria are organelles that govern energy supply and control cell death. Mitochondria also express bacterial features, such as the presence of inner membrane cardiolipin and a circular genome rich in hypomethylated CpG motifs. While mitochondrial extrusion by damaged organs or activated cells is thought to trigger innate immunity, it is unclear whether extracellular mitochondria also stimulate an adaptive immune response. We describe the development of novel assays to detect autoantibodies specific to two distinct components of the mitochondrion: the mitochondrial outer membrane and mitochondrial DNA. Antibodies to these two mitochondrial constituents were increased in both human and murine systemic lupus erythematosus (SLE), compared to controls, and were present at higher levels than in patients with antiphospholipid syndrome or primary biliary cirrhosis. In both bi- and multi-variate regression models, antibodies to mitochondrial DNA, but not whole mitochondria, were associated with increased anti-dsDNA antibodies and lupus nephritis. This study describes new and optimized methods for the assessment of anti-mitochondrial antibodies, and demonstrates their presence in both human and murine SLE. These findings suggest that different mitochondrial components are immunogenic in SLE, and support the concept that extracellular mitochondria may provide an important source of circulating autoantigens in SLE.


Subject(s)
Autoantibodies/immunology , Lupus Erythematosus, Systemic/immunology , Mitochondria/immunology , Adult , Aged , Animals , Antibodies, Antinuclear/blood , Antibodies, Antinuclear/immunology , Autoantibodies/blood , DNA, Mitochondrial/immunology , Disease Models, Animal , Female , Hep G2 Cells , Humans , Lupus Erythematosus, Systemic/pathology , Male , Mice , Middle Aged , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Proteins/immunology , Odds Ratio , Young Adult
6.
Proc Natl Acad Sci U S A ; 115(7): E1550-E1559, 2018 02 13.
Article in English | MEDLINE | ID: mdl-29386381

ABSTRACT

There is a growing appreciation for the contribution of platelets to immunity; however, our knowledge mostly relies on platelet functions associated with vascular injury and the prevention of bleeding. Circulating immune complexes (ICs) contribute to both chronic and acute inflammation in a multitude of clinical conditions. Herein, we scrutinized platelet responses to systemic ICs in the absence of tissue and endothelial wall injury. Platelet activation by circulating ICs through a mechanism requiring expression of platelet Fcγ receptor IIA resulted in the induction of systemic shock. IC-driven shock was dependent on release of serotonin from platelet-dense granules secondary to platelet outside-in signaling by αIIbß3 and its ligand fibrinogen. While activated platelets sequestered in the lungs and leaky vasculature of the blood-brain barrier, platelets also sequestered in the absence of shock in mice lacking peripheral serotonin. Unexpectedly, platelets returned to the blood circulation with emptied granules and were thereby ineffective at promoting subsequent systemic shock, although they still underwent sequestration. We propose that in response to circulating ICs, platelets are a crucial mediator of the inflammatory response highly relevant to sepsis, viremia, and anaphylaxis. In addition, platelets recirculate after degranulation and sequestration, demonstrating that in adaptive immunity implicating antibody responses, activated platelets are longer lived than anticipated and may explain platelet count fluctuations in IC-driven diseases.


Subject(s)
Anaphylaxis/immunology , Antigen-Antibody Complex/immunology , Blood Platelets/immunology , Serotonin/immunology , Shock, Septic/immunology , Adult , Anaphylaxis/blood , Anaphylaxis/genetics , Animals , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Platelet Activation , Platelet Count , Platelet Glycoprotein GPIIb-IIIa Complex/genetics , Platelet Glycoprotein GPIIb-IIIa Complex/immunology , Receptors, IgG/genetics , Receptors, IgG/immunology , Shock, Septic/blood , Shock, Septic/genetics , Young Adult
7.
Plant Pathol J ; 33(6): 561-571, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29238279

ABSTRACT

Prospecting of local grapevine (Vitis vinifera L.) germplasm revealed that Tunisia possesses a rich patrimony which presents diversified organoleptic characteristics. However, viral diseases seriously affect all local grapevine cultivars which risk a complete extinction. Sanitation programs need to be established to preserve and exploit, as a gene pool, the Tunisian vineyards areas. The presence of the Grapevine leafroll associated virus-3 (GLRaV-3), Grapevine stem pitting associated virus (GRSPaV) and Grapevine virus A (GVA), were confirmed in a Tunisian grapevine cultivar using serological and molecular analyses. The association between GRSPaV and GVA viruses induces more rugose wood symptoms and damages. For this reason the cleansing of the infected cultivar is highly advisable. Direct and recurrent somatic embryos of cv. 'Hencha' were successfully induced from filament, when cultured on Chée and Pool (1987). based-medium, enriched with 2 mg 1-1 of 2,4-dichlorophenoxyacetic acid and 2.5 mg 1-1 of Thidiazuron, after 36 weeks of culture. After six months of acclimatization, RT-PCR carried on 50 somaplants confirmed the absence of GVA, GRSPa-V as well as GLRaV-3 viruses in all somaplants. Ampelographic analysis, based on eight OIV descriptors, was carried out on two years acclimated somaplants, compared to the mother plant. Results demonstrated that the shape and contours of 46 somaclones leaves are identical to mother plant leaves and four phenotypically off-type plants were observed. The healthy state of 100% 'Hencha' somaclones and the high percentage of phenotypically true-to-type plants demonstrate that somatic embryogenesis is a promising technique to adopt for grapevine viruses elimination.

8.
J Clin Invest ; 127(5): 1714-1724, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28375155

ABSTRACT

The growth factor receptor Kit is involved in hematopoietic and nonhematopoietic development. Mice bearing Kit defects lack mast cells; however, strains bearing different Kit alleles exhibit diverse phenotypes. Herein, we investigated factors underlying differential sensitivity to IgG-mediated arthritis in 2 mast cell-deficient murine lines: KitWsh/Wsh, which develops robust arthritis, and KitW/Wv, which does not. Reciprocal bone marrow transplantation between KitW/Wv and KitWsh/Wsh mice revealed that arthritis resistance reflects a hematopoietic defect in addition to mast cell deficiency. In KitW/Wv mice, restoration of susceptibility to IgG-mediated arthritis was neutrophil independent but required IL-1 and the platelet/megakaryocyte markers NF-E2 and glycoprotein VI. In KitW/Wv mice, platelets were present in numbers similar to those in WT animals and functionally intact, and transfer of WT platelets did not restore arthritis susceptibility. These data implicated a platelet-independent role for the megakaryocyte, a Kit-dependent lineage that is selectively deficient in KitW/Wv mice. Megakaryocytes secreted IL-1 directly and as a component of circulating microparticles, which activated synovial fibroblasts in an IL-1-dependent manner. Transfer of WT but not IL-1-deficient megakaryocytes restored arthritis susceptibility to KitW/Wv mice. These findings identify functional redundancy among Kit-dependent hematopoietic lineages and establish an unanticipated capacity of megakaryocytes to mediate IL-1-driven systemic inflammatory disease.


Subject(s)
Arthritis, Experimental , Megakaryocytes , Proto-Oncogene Proteins c-kit , Synovial Membrane , Animals , Arthritis, Experimental/genetics , Arthritis, Experimental/immunology , Arthritis, Experimental/pathology , Fibroblasts/immunology , Fibroblasts/pathology , Immunoglobulin G/immunology , Interleukin-1/genetics , Interleukin-1/immunology , Mast Cells/immunology , Mast Cells/pathology , Megakaryocytes/immunology , Megakaryocytes/pathology , Mice , Mice, Knockout , NF-E2 Transcription Factor, p45 Subunit/genetics , NF-E2 Transcription Factor, p45 Subunit/immunology , Platelet Membrane Glycoproteins/genetics , Platelet Membrane Glycoproteins/immunology , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/immunology , Synovial Membrane/immunology , Synovial Membrane/pathology
9.
Platelets ; 28(3): 214-221, 2017 May.
Article in English | MEDLINE | ID: mdl-28102737

ABSTRACT

Interest in cell-derived extracellular vesicles and their physiological and pathological implications is constantly growing. Microvesicles, also known as microparticles, are small extracellular vesicles released by cells in response to activation or apoptosis. Among the different microvesicles present in the blood of healthy individuals, platelet-derived microvesicles (PMVs) are the most abundant. Their characterization has revealed a heterogeneous cargo that includes a set of adhesion molecules. Similarly to platelets, PMVs are also involved in thrombosis through support of the coagulation cascade. The levels of circulatory PMVs are altered during several disease manifestations such as coagulation disorders, rheumatoid arthritis, systemic lupus erythematosus, cancers, cardiovascular diseases, and infections, pointing to their potential contribution to disease and their development as a biomarker. This review highlights recent findings in the field of PMV research and addresses their contribution to both healthy and diseased states.


Subject(s)
Blood Coagulation/physiology , Blood Platelets/metabolism , Cell-Derived Microparticles/metabolism , Platelet Activation/physiology , Platelet Adhesiveness/physiology , Apoptosis , Arthritis, Rheumatoid/blood , Arthritis, Rheumatoid/diagnosis , Arthritis, Rheumatoid/pathology , Biomarkers/blood , Blood Platelets/pathology , Cardiovascular Diseases/blood , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/pathology , Cell-Derived Microparticles/chemistry , Humans , Lupus Erythematosus, Systemic/blood , Lupus Erythematosus, Systemic/diagnosis , Lupus Erythematosus, Systemic/pathology , Neoplasms/blood , Neoplasms/diagnosis , Neoplasms/pathology , Neovascularization, Pathologic/blood , Neovascularization, Pathologic/diagnosis , Neovascularization, Pathologic/pathology , Thrombosis/blood , Thrombosis/diagnosis , Thrombosis/pathology
10.
Sensors (Basel) ; 16(6)2016 May 28.
Article in English | MEDLINE | ID: mdl-27240377

ABSTRACT

In this paper, we present a new modular lab on a chip design for multimodal neurotransmitter (NT) sensing and niosome generation based on a plug-and-play concept. This architecture is a first step toward an automated platform for an automated modulation of neurotransmitter concentration to understand and/or treat neurodegenerative diseases. A modular approach has been adopted in order to handle measurement or drug delivery or both measurement and drug delivery simultaneously. The system is composed of three fully independent modules: three-channel peristaltic micropumping system, a three-channel potentiostat and a multi-unit microfluidic system composed of pseudo-Y and cross-shape channels containing a miniature electrode array. The system was wirelessly controlled by a computer interface. The system is compact, with all the microfluidic and sensing components packaged in a 5 cm × 4 cm × 4 cm box. Applied to serotonin, a linear calibration curve down to 0.125 mM, with a limit of detection of 31 µ M was collected at unfunctionalized electrodes. Added sensitivity and selectivity was achieved by incorporating functionalized electrodes for dopamine sensing. Electrode functionalization was achieved with gold nanoparticles and using DNA and o-phenylene diamine polymer. The as-configured platform is demonstrated as a central component toward an "intelligent" drug delivery system based on a feedback loop to monitor drug delivery.


Subject(s)
Biosensing Techniques/methods , Microfluidics/methods , Electrochemical Techniques/methods , Electrodes , Gold/chemistry , Metal Nanoparticles/chemistry , Wireless Technology
SELECTION OF CITATIONS
SEARCH DETAIL