Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Phys Rev Lett ; 130(2): 026201, 2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36706406

ABSTRACT

The concept of quantum phase transitions (QPTs) plays a central role in the description of condensed matter systems. In this Letter, we perform high-quality wave-function-based simulations to demonstrate the existence of a quantum phase transition in a crucially relevant molecular system, namely, water, forming linear chains of rotating molecules. We determine various critical exponents and reveal the water chain QPT to belong to the (1+1)-dimensional Ising universality class. Furthermore, the effect of breaking symmetries is examined, and it is shown that, by breaking the inversion symmetry, the ground state degeneracy of the ordered quantum phase is lifted to yield two many-body states with opposite polarization. The possibility of forming ferroelectric phases together with a thermal stability of the quantum critical regime up to ∼10 K makes the linear water chain a promising candidate as a platform for quantum devices.

2.
Article in English | MEDLINE | ID: mdl-25122411

ABSTRACT

We introduce a quantum Monte Carlo algorithm to measure the Rényi entanglement entropies in systems of interacting bosons in the continuum. This approach is based on a path-integral ground state method that can be applied to interacting itinerant bosons in any spatial dimension with direct relevance to experimental systems of quantum fluids. We demonstrate how it may be used to compute spatial mode entanglement, particle partitioned entanglement, and the entanglement of particles, providing insights into quantum correlations generated by fluctuations, indistinguishability, and interactions. We present proof-of-principle calculations and benchmark against an exactly soluble model of interacting bosons in one spatial dimension. As this algorithm retains the fundamental polynomial scaling of quantum Monte Carlo when applied to sign-problem-free models, future applications should allow for the study of entanglement entropy in large-scale many-body systems of interacting bosons.


Subject(s)
Entropy , Monte Carlo Method , Quantum Theory , Algorithms , Elementary Particles , Models, Molecular , Molecular Conformation
3.
Phys Rev Lett ; 97(14): 147202, 2006 Oct 06.
Article in English | MEDLINE | ID: mdl-17155288

ABSTRACT

Using large scale quantum Monte Carlo simulations and dual vortex theory, we analyze the ground state phase diagram of hard-core bosons on the kagome lattice with nearest-neighbor repulsion. In contrast with the case of a triangular lattice, no supersolid emerges for strong interactions. While a uniform superfluid prevails at half filling, two novel solid phases emerge at densities rho=1/3 and rho=2/3. These solids exhibit an only partial ordering of the bosonic density, allowing for local resonances on a subset of hexagons of the kagome lattice. We provide evidence for a weakly first-order phase transition at the quantum melting point between these solid phases and the superfluid.

4.
Phys Rev Lett ; 95(12): 127207, 2005 Sep 16.
Article in English | MEDLINE | ID: mdl-16197107

ABSTRACT

We study the interplay of Mott localization, geometric frustration, and superfluidity for hard-core bosons with nearest-neighbor repulsion on the triangular lattice. For this model at half filling, we demonstrate that superfluidity survives for arbitrarily large repulsion, and that diagonal solid order emerges in the strongly correlated regime from an order-by-disorder mechanism. This is thus an unusual example of a stable supersolid phase of hard-core lattice bosons at a commensurate filling.

5.
Phys Rev Lett ; 87(6): 067203, 2001 Aug 06.
Article in English | MEDLINE | ID: mdl-11497852

ABSTRACT

It has recently been suggested that long-range magnetic dipolar interactions are responsible for spin ice behavior in the Ising pyrochlore magnets Dy2Ti2O7 and Ho2Ti2O7. We report here numerical results on the low temperature properties of the dipolar spin ice model, obtained via a new loop algorithm which greatly improves the dynamics at low temperature. We recover the previously reported missing entropy in this model, and find a first order transition to a long-range ordered phase with zero total magnetization at very low temperature. We discuss the relevance of these results to Dy2Ti2O7 and Ho2Ti2O7.

6.
Phys Rev Lett ; 87(4): 047205, 2001 Jul 23.
Article in English | MEDLINE | ID: mdl-11461643

ABSTRACT

The pyrochlore material Ho2Ti2O7 has been suggested to show "spin ice" behavior. We present neutron scattering and specific heat results that establish unambiguously that Ho2Ti2O7 exhibits spin ice correlations at low temperature. Diffuse magnetic neutron scattering is quite well described by a nearest neighbor spin ice model and very accurately described by a dipolar spin ice model. The heat capacity is well accounted for by the sum of a dipolar spin ice contribution and an expected nuclear spin contribution, known to exist in other Ho3+ salts. These results settle the question of the nature of the low temperature spin correlations in Ho2Ti2O7 for which contradictory claims have been made.

SELECTION OF CITATIONS
SEARCH DETAIL