Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Transl Med ; 16(730): eadf1691, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38232139

ABSTRACT

Glycogen synthase 1 (GYS1), the rate-limiting enzyme in muscle glycogen synthesis, plays a central role in energy homeostasis and has been proposed as a therapeutic target in multiple glycogen storage diseases. Despite decades of investigation, there are no known potent, selective small-molecule inhibitors of this enzyme. Here, we report the preclinical characterization of MZ-101, a small molecule that potently inhibits GYS1 in vitro and in vivo without inhibiting GYS2, a related isoform essential for synthesizing liver glycogen. Chronic treatment with MZ-101 depleted muscle glycogen and was well tolerated in mice. Pompe disease, a glycogen storage disease caused by mutations in acid α glucosidase (GAA), results in pathological accumulation of glycogen and consequent autophagolysosomal abnormalities, metabolic dysregulation, and muscle atrophy. Enzyme replacement therapy (ERT) with recombinant GAA is the only approved treatment for Pompe disease, but it requires frequent infusions, and efficacy is limited by suboptimal skeletal muscle distribution. In a mouse model of Pompe disease, chronic oral administration of MZ-101 alone reduced glycogen buildup in skeletal muscle with comparable efficacy to ERT. In addition, treatment with MZ-101 in combination with ERT had an additive effect and could normalize muscle glycogen concentrations. Biochemical, metabolomic, and transcriptomic analyses of muscle tissue demonstrated that lowering of glycogen concentrations with MZ-101, alone or in combination with ERT, corrected the cellular pathology in this mouse model. These data suggest that substrate reduction therapy with GYS1 inhibition may be a promising therapeutic approach for Pompe disease and other glycogen storage diseases.


Subject(s)
Glycogen Storage Disease Type II , Mice , Animals , Glycogen Storage Disease Type II/drug therapy , Glycogen Synthase/metabolism , Glycogen Synthase/pharmacology , Mice, Knockout , Glycogen/metabolism , Muscle, Skeletal/metabolism , Enzyme Replacement Therapy/methods
2.
J Med Chem ; 66(1): 149-169, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36533617

ABSTRACT

Hyperactivation of mTOR kinase by mutations in the PI3K/mTOR pathway or by crosstalk with other mutant cancer drivers, such as RAS, is a feature of many tumors. Multiple allosteric inhibitors of mTORC1 and orthosteric dual inhibitors of mTORC1 and mTORC2 have been developed as anticancer drugs, but their clinical utility has been limited. To address these limitations, we have developed a novel class of "bi-steric inhibitors" that interact with both the orthosteric and the allosteric binding sites in order to deepen the inhibition of mTORC1 while also preserving selectivity for mTORC1 over mTORC2. In this report, we describe the discovery and preclinical profile of the development candidate RMC-5552 and the in vivo preclinical tool compound RMC-6272. We also present evidence that selective inhibition of mTORC1 in combination with covalent inhibition of KRASG12C shows increased antitumor activity in a preclinical model of KRASG12C mutant NSCLC that exhibits resistance to KRASG12C inhibitor monotherapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Mechanistic Target of Rapamycin Complex 1 , Proto-Oncogene Proteins p21(ras)/metabolism , Cell Proliferation , TOR Serine-Threonine Kinases , Mechanistic Target of Rapamycin Complex 2 , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/chemistry , Cell Line, Tumor
3.
Cell Rep ; 40(1): 111041, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35793618

ABSTRACT

Glycogen is the primary energy reserve in mammals, and dysregulation of glycogen metabolism can result in glycogen storage diseases (GSDs). In muscle, glycogen synthesis is initiated by the enzymes glycogenin-1 (GYG1), which seeds the molecule by autoglucosylation, and glycogen synthase-1 (GYS1), which extends the glycogen chain. Although both enzymes are required for proper glycogen production, the nature of their interaction has been enigmatic. Here, we present the human GYS1:GYG1 complex in multiple conformations representing different functional states. We observe an asymmetric conformation of GYS1 that exposes an interface for close GYG1 association, and propose this state facilitates handoff of the GYG1-associated glycogen chain to a GYS1 subunit for elongation. Full activation of GYS1 widens the GYG1-binding groove, enabling GYG1 release concomitant with glycogen chain growth. This structural mechanism connecting chain nucleation and extension explains the apparent stepwise nature of glycogen synthesis and suggests distinct states to target for GSD-modifying therapeutics.


Subject(s)
Glycogen Synthase , Glycogenolysis , Glycoproteins , Glucosyltransferases/metabolism , Glycogen/metabolism , Glycogen Synthase/metabolism , Glycoproteins/metabolism , Humans
4.
Org Lett ; 15(21): 5594-7, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24138164

ABSTRACT

A three-step synthesis of pseudoephenamine suitable for preparing multigram amounts of both enantiomers of the auxiliary from the inexpensive starting material benzil is described. The sequence involves synthesis of the crystalline monomethylimine derivative of benzil, reduction of that substance with lithium aluminum hydride, and resolution of pseudoephenamine with mandelic acid.


Subject(s)
Amphetamine/chemical synthesis , Amphetamines/chemical synthesis , Benzyl Compounds/chemistry , Amphetamine/chemistry , Amphetamines/chemistry , Molecular Structure , Stereoisomerism
5.
Org Lett ; 15(12): 3134-7, 2013 Jun 21.
Article in English | MEDLINE | ID: mdl-23746325

ABSTRACT

The utility of pseudoephenamine as a chiral auxiliary for the alkylative construction of quaternary α-methyl α-amino acids is demonstrated. The method is notable for the high diastereoselectivities of the alkylation reactions, for its versatility with respect to electrophilic substrate partners, and for its mild hydrolysis conditions, which provide α-amino acids without salt contaminants. Alternatively, α-amino esters can be obtained by direct alcoholysis.


Subject(s)
Alanine/chemistry , Amphetamine/chemistry , Inositol/analogs & derivatives , Alanine/analogs & derivatives , Alkylation , Amino Acids/chemical synthesis , Amino Acids/chemistry , Esters , Inositol/chemistry , Lactones/chemistry , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...