Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Biosci Rep ; 44(4)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38563086

ABSTRACT

The objective of this work was to evaluate the combination of synthetic peptides based on the γ-core motif of defensin PvD1 with amphotericin B (AmB) at different concentrations against Candida albicans. We applied the checkerboard assay using different concentrations of the commercial drug AmB and the synthetic peptides γ31-45PvD1++ and γ33-41PvD1++ against C. albicans, aiming to find combinations with synergistic interactions. Between these two interactions involving γ31-45PvD1++ and AmB, an additive effect was observed. One such interaction occurred at concentrations of 0.009 µM of peptide γ31-45PvD1++ and 13.23 µM of AmB and another condition of 0.019 µM of peptide γ31-45PvD1++ and 6.61 µM of AmB. The other two concentrations of the interaction showed a synergistic effect in the combination of synthetic peptide γ31-45PvD1++ and AmB, where the concentrations were 1.40 µM peptide γ31-45PvD1++ and 0.004 µM AmB and 0.70 µM γ31-45PvD1++ peptide and 0.002 µM AmB. We proceeded with analysis of the mechanism of action involving synergistic effects. This examination unveiled a range of impactful outcomes, including the impairment of mitochondrial functionality, compromise of cell wall integrity, DNA degradation, and a consequential decline in cell viability. We also observed that both synergistic combinations were capable of causing damage to the plasma membrane and cell wall, causing leakage of intracellular components. This discovery demonstrates for the first time that the synergistic combinations found between the synthetic peptide γ31-45PvD1++ and AmB have an antifungal effect against C. albicans, acting on the integrity of the plasma membrane and cell wall.


Subject(s)
Amphotericin B , Candida albicans , Amphotericin B/pharmacology , Antifungal Agents/pharmacology , Peptides/pharmacology , Cell Membrane , Cell Wall , Microbial Sensitivity Tests
2.
Probiotics Antimicrob Proteins ; 15(5): 1124-1136, 2023 10.
Article in English | MEDLINE | ID: mdl-35841476

ABSTRACT

The objective of this work was to purify and evaluate the antifungal potential of peptides present in immature and ripe fruits of Capsicum chinense Jacq. (accession UENF 1706) on the medical importance yeasts. Initially the proteins of these seedless fruits were extracted, precipitated with ammonium sulfate at 70% saturation, followed by heating at 80 °C. Subsequently, the peptide-rich extract was fractionated by DEAE-Sepharose anion exchange. The whole process was monitored by tricine-SDS-PAGE. The results revealed that the fraction retained in anion exchange column, called D2, of immature and ripe fruits significantly inhibit the growth of Candida albicans and C. tropicalis yeasts. Due to the higher yield, the D2 fraction of immature fruits was selected for further purification by reverse phase chromatography on HPLC, where sixteen different fractions (H1-H16) were obtained and these were subjected to antifungal assay at 50 µg mL-1. Although almost all fractions tested had significant growth inhibition, the HI9 fraction inhibit 99% of the two yeasts tested. The effect of treatment with HI3, HI8, HI9, and HI14 fractions on the viability of yeast cells was analyzed due to their strong growth inhibition. We observed that only 50 µg mL-1 of the HI9 fraction is the lethal dose for 100% of the cells of C. albicans and C. tropicalis in the original assay. Although the HI9 fraction had a fungicidal effect on both tested yeasts, we only observed membrane permeabilization for C. tropicalis cells treated with 50 µg mL-1 of this fraction. Through mass spectrometry, we identified that the 6 kDa peptide band of HI9 fraction showed similarity with antimicrobial peptides belonging to the plant defensin family.


Subject(s)
Capsicum , Fruit , Fruit/chemistry , Candida , Antifungal Agents/chemistry , Capsicum/chemistry , Amino Acid Sequence , Peptides/chemistry , Yeasts
3.
J Appl Microbiol ; 132(6): 4310-4320, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35332971

ABSTRACT

AIMS: This study aimed to evaluate the combined effect of a mannose-binding lectin Helja with fluconazole (FLC) on Candida albicans and to get insights about the joint action mechanism. METHODS AND RESULTS: The fungal growth was assessed following the optical density at 630 nm. Fungal cell morphology and nucleus integrity were analysed by flow cytometry and confocal laser scanning microscopy using Calcofluor White (CFW) and 4',6-diamidino-2-phenylindole (DAPI) staining respectively. The basis of Helja + FLC action on cell wall and plasma membrane was analysed using perturbing agents. The Helja + FLC combination exhibited an inhibitory effect of fungal growth about three times greater than the sum of both compounds separately and inhibited fungal morphological plasticity, an important virulence attribute associated with drug resistance. Cells treated with Helja + FLC showed morphological changes, nucleus disintegration and formation of multimera structures, leading to cell collapse. CONCLUSIONS: Our findings indicate that the Helja + FLC combination exhibited a potent antifungal activity based on their simultaneous action on different microbial cell targets. SIGNIFICANCE AND IMPACT OF STUDY: The combination of a natural protein with conventional drugs might be helpful for the design of effective therapeutic strategies against Candida, contributing to minimize the development of drug resistance and host cell toxicity.


Subject(s)
Candida albicans , Fluconazole , Antifungal Agents/pharmacology , Candida , Drug Resistance, Fungal , Drug Synergism , Fluconazole/pharmacology , Microbial Sensitivity Tests
4.
Probiotics Antimicrob Proteins ; 13(3): 862-872, 2021 06.
Article in English | MEDLINE | ID: mdl-33454869

ABSTRACT

Antimicrobial peptides (AMPs) are molecules present in several life forms, possess broad-spectrum of inhibitory activity against pathogenic microorganisms, and are a promising alternative to combat the multidrug resistant pathogens. The aim of this work was to identify and characterize AMPs from Capsicum chinense fruits and to evaluate their inhibitory activities against yeasts of the genus Candida and α-amylases. Initially, after protein extraction from fruits, the extract was submitted to anion exchange chromatography resulting two fractions. Fraction D1 was further fractionated by molecular exclusion chromatography, and three fractions were obtained. These fractions showed low molecular mass peptides, and in fraction F3, only two protein bands of approximately 6.5 kDa were observed. Through mass spectrometry, we identified that the lowest molecular mass protein band of fraction F3 showed similarity with AMPs from plant defensin family. We named this peptide CcDef3 (Capsicum chinense defensin 3). The antifungal activity of these fractions was analyzed against yeasts of the genus Candida. At 200 µg/mL, fraction F1 inhibited the growth of C. tropicalis by 26%, fraction F2 inhibited 35% of the growth of C. buinensis, and fraction F3 inhibited all tested yeasts, exhibiting greater inhibition activity on the growth of the yeast C. albicans (86%) followed by C. buinensis (69%) and C. tropicalis (21%). Fractions F1 and F2 promoted membrane permeabilization of all tested yeasts and increased the endogenous induction of reactive oxygen species (ROS) in C. buinensis and C. tropicalis, respectively. We also observed that fraction F3 at a concentration of 50 µg/mL inhibited the α-amylase activities of Tenebrio molitor larvae by 96% and human salivary by 100%. Thus, our results show that fraction F3, which contains CcDef3, is a very promising protein fraction because it has antifungal potential and is able to inhibit the activity of different α-amylase enzymes.


Subject(s)
Antifungal Agents , Antimicrobial Peptides/pharmacology , Candida/drug effects , Capsicum , alpha-Amylases/antagonists & inhibitors , Antifungal Agents/pharmacology , Capsicum/chemistry , Defensins , Fruit/chemistry , Humans , Phytochemicals/pharmacology
5.
J Med Chem ; 63(17): 9391-9402, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32787086

ABSTRACT

Available treatments for invasive fungal infections have limitations, including toxicity and the emergence of resistant strains. Therefore, there is an urgent need for alternative solutions. Because of their unique mode of action and high selectivity, plant defensins (PDs) are worthy therapeutic candidates. Chemical synthesis remains a preferred method for the production of many peptide-based therapeutics. Given the relatively long sequence of PDs, as well as their complicated posttranslational modifications, the synthetic route can be considered challenging. Here, we describe a total synthesis of PvD1, the defensin from the common bean Phaseolus vulgaris. Analytical, structural, and functional characterization revealed that both natural and synthetic peptides fold into a canonical CSαß motif stabilized by conserved disulfide bonds. Moreover, synthetic PvD1 retained the biological activity against four different Candida species and showed no toxicity in vivo. Adding the high resistance of synthetic PvD1 to proteolytic degradation, we claim that conditions are now met to consider PDs druggable biologicals.


Subject(s)
Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Defensins/chemistry , Defensins/pharmacology , Phaseolus/chemistry , Amino Acid Sequence , Antifungal Agents/chemical synthesis , Chemistry Techniques, Synthetic , Defensins/chemical synthesis , Humans , Models, Molecular , Protein Conformation , Protein Stability , Proteolysis
6.
Nanoscale ; 11(48): 23366-23381, 2019 Dec 28.
Article in English | MEDLINE | ID: mdl-31793603

ABSTRACT

One of the most important causes of failure in tumour treatment is the development of resistance to therapy. Cancer cells can develop the ability to lose sensitivity to anti-neoplastic drugs during reciprocal crosstalk between cells and their interaction with the tumour microenvironment (TME). Cell-to-cell communication regulates a cascade of interdependent events essential for disease development and progression and can be mediated by several signalling pathways. Exosome-mediated communication is one of the pathways regulating these events. Tumour-derived exosomes (TDE) are believed to have the ability to modulate TMEs and participate in multidrug resistance mechanisms. In this work, we studied the effect of the natural defensin from common bean, PvD1, on the formation of exosomes by breast cancer MCF-7 cells, mainly the modulatory effect it has on the level of CD63 and CD9 tetraspanins. Moreover, we followed the interaction of PvD1 with biological and model membranes of selected composition, by biophysical and imaging techniques. Overall, the results show that PvD1 induces a dual effect on MCF-7 derived exosomes: the peptide attenuates the recruitment of CD63 and CD9 to exosomes intracellularly and binds to the mature exosomes in the extracellular environment. This work uncovers the exosome-mediated anticancer action of PvD1, a potential nutraceutical agent.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/pathology , Defensins/pharmacology , Exosomes/drug effects , Plant Proteins/pharmacology , Breast Neoplasms/metabolism , Cell Survival/drug effects , Exosomes/metabolism , Female , Humans , MCF-7 Cells , Tetraspanin 29/metabolism , Tetraspanin 30/metabolism
7.
Biosci Rep ; 39(4)2019 04 30.
Article in English | MEDLINE | ID: mdl-30902879

ABSTRACT

There are several phytosanitary problems that have been causing serious damage to the Capsicum crops, including anthracnose. Upon attack by certain pathogens, various protein molecules are produced, which are known as proteins related to pathogenesis (PR proteins), including antimicrobial peptides such as protease inhibitors, defensins and lipid transfer proteins (LTPs). The objective of this work is to identify antimicrobial proteins and/or peptides of two genotypes from Capsicum annuum fruits infected with Colletotrichum gloeosporioides The fungus was inoculated into Capsicum fruits by the deposition of a spore suspension (106 conidia ml-1), and after 24 and 48 h intervals, the fruits were removed from the humid chamber and subjected to a protein extraction process. Protein analysis of the extracts was performed by tricine gel electrophoresis and Western blotting. The distinctive bands between genotypes in the electrophoresis profiles were subjected to mass spectrometry sequencing. Trypsin inhibition assays, reverse zymographic detection of protease inhibition and ß-1,3-glucanase activity assays were also performed and extracts were also tested for their ability to inhibit the growth of C. gloeosporioides fungi 'in vitro' There were several low molecular weight proteins in all treated samples, and some treatments in which antimicrobial peptides such as defensin, lipid transfer protein (LTP) and protease inhibitor have been identified. It was shown that the green fruits are more responsive to infection, showing the production of antimicrobial peptides in response to injury and inoculation of the fungus, what did not occur in ripe fruits under any treatment.


Subject(s)
Antimicrobial Cationic Peptides/genetics , Capsicum/genetics , Colletotrichum/physiology , Plant Diseases/microbiology , Plant Proteins/genetics , Antimicrobial Cationic Peptides/analysis , Capsicum/microbiology , Carrier Proteins/analysis , Carrier Proteins/genetics , Defensins/analysis , Defensins/genetics , Fruit/genetics , Fruit/microbiology , Host-Pathogen Interactions , Plant Diseases/genetics , Plant Proteins/analysis
8.
Int J Microbiol ; 2018: 8546470, 2018.
Article in English | MEDLINE | ID: mdl-30123275

ABSTRACT

The objective of the present study was to evaluate the antimicrobial activity of the Cc-LTP2 and Cc-GRP peptides isolated from Coffea canephora seeds and their possible synergistic activity with the azole drug fluconazole and characterize their mechanisms of action on cells of pathogenic fungi. Cc-LTP2 and Cc-GRP alone or in combination with 20 µg/mL of fluconazole were evaluated for their antimicrobial activity on the fungus Fusarium solani, and the effects of these peptides on the permeability of membranes and the induction of oxidative stress were determined. Our results show that these peptides at a concentration of 400 µg/mL combined with 20 µg/mL of fluconazole were able to inhibit the growth of the tested fungi, promote changes in their growth pattern, permeabilize the membrane, and induce reactive oxygen species (ROS). Some of these results were also observed with the peptides alone or with fluconazole alone, suggesting that the peptides act synergistically, promoting the potentiation of antimicrobial action. In this study, it was shown that Cc-LTP2 and Cc-GRP in combination with fluconazole were able to inhibit the growth of the fungus F. solani, to promote permeabilization of its membrane, and to induce the production of ROS, suggesting a combinatorial activity between the peptides and fluconazole.

9.
Biosci Rep ; 38(2)2018 04 27.
Article in English | MEDLINE | ID: mdl-29599127

ABSTRACT

CaThi is a thionin-like peptide isolated from fruits of Capsicum annuum, which has strong antimicrobial activity against bacteria, yeasts and filamentous fungi, and induced reactive oxygen species (ROS) in fungi. ROS are molecules that appear in the early stages of programmed cell death or apoptosis in fungi. Due to this fact, in this work we analyzed some events that may be related to process of apoptosis on yeast induced by CaThi. To investigate this possibility, we evaluated phosphatidylserine (PS) externalization, presence of active caspases and the ability of CaThi to bind to DNA in Candida tropicalis cells. Additionally, we investigated mitochondrial membrane potential, cell surface pH, and extracellular H+ fluxes in C. tropicalis cells after treatment with CaThi. Our results showed that CaThi induced PS externalization in the outer leaflet of the cell membrane, activation of caspases, and it had the ability for DNA binding and to dissipate mitochondrial membrane potential. In addition, the cell surface pH increased significantly when the C. tropicalis cells were exposed to CaThi which corroborates with ~96% inhibition on extracellular H+ efflux. Taking together, these data suggest that this peptide is capable of promoting an imbalance in pH homeostasis during yeast cell death playing a modulatory role in the H+ transport systems. In conclusion, our results strongly indicated that CaThi triggers apoptosis in C. tropicalis cells, involving a pH signaling mechanism.


Subject(s)
Apoptosis/drug effects , Capsicum/chemistry , Caspases/metabolism , Fruit/chemistry , Peptides/pharmacology , Plant Proteins/pharmacology , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/enzymology , Enzyme Activation/drug effects , Hydrogen-Ion Concentration , Peptides/chemistry , Plant Proteins/chemistry , Reactive Oxygen Species/metabolism
10.
Nanoscale ; 9(43): 16887-16899, 2017 Nov 09.
Article in English | MEDLINE | ID: mdl-29076508

ABSTRACT

Metastatic breast cancer is a very serious life threatening condition that poses many challenges for the pharmaceutical development of effective chemotherapeutics. As the therapeutics targeted to the localized masses in breast improve, metastatic lesions in the brain slowly increase in their incidence compromising successful treatment outcomes overall. The blood-brain-barrier (BBB) is one important obstacle for the management of breast cancer brain metastases. New therapeutic approaches are in demand for overcoming the BBB's breaching by breast tumor cells. In this work we demonstrate the potential dual role of a natural antimicrobial plant defensin, PvD1: it interferes with the formation of solid tumors in the breast and concomitantly controls adhesion of breast cancer cells to human brain endothelial cells. We have used a combination of techniques that probe PvD1's effect at the single cell level and reveal that this peptide can effectively damage breast tumor cells, leaving healthy breast and brain cells unaffected. Results suggest that PvD1 quickly internalizes in cancer cells but remains located in the membrane of normal cells with no significant damage to its structure and biomechanical properties. These interactions in turn modulate cell adhesiveness between tumor and BBB cells. PvD1 is a potential template for the design of innovative pharmacological approaches for metastatic breast cancer treatment: the manipulation of the biomechanical properties of tumor cells that ultimately prevent their attachment to the BBB.


Subject(s)
Blood-Brain Barrier , Brain Neoplasms/secondary , Brain Neoplasms/therapy , Breast Neoplasms/pathology , Defensins/therapeutic use , Plant Proteins/therapeutic use , Brain/cytology , Breast/cytology , Cell Line, Tumor , Humans , Microscopy, Atomic Force , Phaseolus , Single-Cell Analysis
11.
Biopolymers ; 108(3)2017 May.
Article in English | MEDLINE | ID: mdl-28073158

ABSTRACT

Many Fusarium species are able to cause severe infections in plants as well as in animals and humans. Therefore, the discovery of new antifungal agents is of paramount importance. CaThi belongs to the thionins, which are cationic peptides with low molecular weights (∼5 kDa) that have toxic effects against various microorganisms. Herein, we study the mechanism of action of CaThi and its combinatory effect with fluconazole (FLC) against Fusarium solani. The mechanism of action of CaThi was studied by growth inhibition, viability, plasma membrane permeabilization, ROS induction, caspase activation, localization, and DNA binding capability, as assessed with Sytox green, DAB, FITC-VAD-FMK, CaThi-FITC, and gel shift assays. The combinatory effect of CaThi and FLC was assessed using a growth inhibition assay. Our results demonstrated that CaThi present a dose dependent activity and at the higher used concentration (50 µg mL-1 ) inhibits 83% of F. solani growth, prevents the formation of hyphae, permeabilizes membranes, induces endogenous H2 O2 , activates caspases, and localizes intracellularly. CaThi combined with FLC, at concentrations that alone do not inhibit F. solani, result in 100% death of F. solani when combined. The data presented in this study demonstrate that CaThi causes death of F. solani via apoptosis; an intracellular target may also be involved. Combined treatment using CaThi and FLC is a strong candidate for studies aimed at improved targeting of F. solani. This strategy is of particular interest because it minimizes selection of resistant microorganisms.


Subject(s)
Antifungal Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Fluconazole/pharmacology , Thionins/pharmacology , Antifungal Agents/chemistry , Antimicrobial Cationic Peptides/chemistry , Capsicum/chemistry , Cell Membrane/drug effects , Cell Membrane Permeability/drug effects , Fruit/chemistry , Fusarium/drug effects , Fusarium/pathogenicity , Humans , Hyphae/drug effects , Hyphae/pathogenicity , Thionins/chemistry
12.
Antonie Van Leeuwenhoek ; 101(3): 657-70, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22160750

ABSTRACT

A 6,000 Da peptide, named CaTI, was isolated from Capsicum annuum L. seeds and showed potent inhibitory activity against trypsin and chymotrypsin. The aim of this study was to determine the effect of CaTI on Saccharomyces cerevisiae, Candida albicans, Candida tropicalis and Kluyveromyces marxiannus cells. We observed that CaTI inhibited the growth of S. cerevisiae, K. marxiannus as well as C. albicans and induced cellular agglomeration and the release of cytoplasmic content. No effect on growth was observed in C. tropicalis but morphological changes were noted. In the spot assay, different degrees of sensitivity were shown among the strains and concentrations tested. Scanning electron microscopy showed that S. cerevisiae, K. marxiannus and C. albicans, in the presence of CaTI, exhibited morphological alterations, such as the formation of pseudohyphae, cellular aggregates and elongated forms. We also show that CaTI induces the generation of nitric oxide and interferes in a dose-dependent manner with glucose-stimulated acidification of the medium mediated by H(+)-ATPase of S. cerevisiae cells.


Subject(s)
Antifungal Agents/isolation & purification , Candida albicans/drug effects , Candida tropicalis/drug effects , Capsicum/enzymology , Kluyveromyces/drug effects , Plant Proteins/pharmacology , Saccharomyces cerevisiae/drug effects , Trypsin Inhibitors/pharmacology , Antifungal Agents/pharmacology , Candida albicans/growth & development , Candida albicans/ultrastructure , Candida tropicalis/growth & development , Candida tropicalis/ultrastructure , Cell Membrane Permeability/drug effects , Culture Media, Conditioned , Dose-Response Relationship, Drug , Drug Design , Drug Evaluation, Preclinical , Fungal Proteins/antagonists & inhibitors , Glucose/pharmacology , Kluyveromyces/growth & development , Kluyveromyces/ultrastructure , Microbial Sensitivity Tests , Microscopy, Electron, Scanning , Nitric Oxide/biosynthesis , Plant Proteins/chemistry , Plant Proteins/isolation & purification , Proton-Translocating ATPases/antagonists & inhibitors , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/ultrastructure , Trypsin Inhibitors/chemistry , Trypsin Inhibitors/isolation & purification
13.
Curr Microbiol ; 62(4): 1209-17, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21170711

ABSTRACT

In recent years, studies have demonstrated the function of many antimicrobial peptides against an extensive number of microorganisms that have been isolated from different plant species and that have been used as models for the study of various cellular processes linked to these peptides' activities. Recently, a new defensin from Phaseolus vulgaris (L.) seeds, named PvD(1,) was isolated and characterized. PvD(1) was purified through anion exchange and phase-reverse chromatography. PvD(1)'s antifungal activity was tested. A SYTOX Green uptake assay revealed that the defensin PvD(1) is capable of causing membrane permeabilization in the filamentous fungi Fusarium oxysporum, Fusarium solani, and Fusarium laterithium and in yeast strains Candida parapsilosis, Pichia membranifaciens, Candida tropicalis, Candida albicans, Kluyveromyces marxiannus, and Saccharomyces cerevisiae at a concentration of 100 µg/ml. Ultrastructural analysis of C. albicans and C. guilliermondii cells treated with this defensin revealed disorganization of both cytoplasmic content and the plasma membrane. PvD(1) is also able to inhibit glucose-stimulated acidification of the medium by yeast cells and filamentous fungi, as well as to induce the production of reactive oxygen species and nitric oxide in C. albicans and F. oxysporum cells.


Subject(s)
Antifungal Agents/pharmacology , Cell Membrane Permeability/drug effects , Defensins/pharmacology , Fungi/drug effects , Phaseolus/chemistry , Plant Proteins/pharmacology , Reactive Oxygen Species/metabolism , Culture Media/chemistry , Fungi/metabolism
14.
Peptides ; 29(12): 2090-100, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18786582

ABSTRACT

The PvD1 defensin was purified from Phaseolus vulgaris (cv. Pérola) seeds, basically as described by Terras et al. [Terras FRG, Schoofs HME, De Bolle MFC, Van Leuven F, Ress SB, Vanderleyden J, Cammue BPA, Broekaer TWF. Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds. J Biol Chem 1992;267(22):15301-9], with some modifications. A DEAE-Sepharose, equilibrated with 20mM Tris-HCl, pH 8.0, was initially utilized for the separation of peptides after ammonium sulfate fractionation. The basic fraction (the non-retained peak) obtained showed the presence of one unique band in SDS-Tricine gel electrophoresis with a molecular mass of approximately 6kDa. The purification of this peptide was confirmed after a reverse-phase chromatography in a C2/C18 column by HPLC, where once again only one peak was observed and denominated H1. H1 was submitted to N-terminal sequencing and the comparative analysis in databanks revealed high similarity with sequences of different defensins isolated from other plants species. The N-terminal sequence of the mature defensin isolated was used to produce a degenerated primer. This primer allowed the amplification of the defensin cDNA by RT-PCR from mRNA of P. vulgaris seeds. The sequence analysis of the cloned cDNA, named PVD1, demonstrated 314bp encoding a polypeptide of 47 amino acids. The deduced peptide presented high similarity with plant defensins of Vigna unguiculata (93%), Cicer arietinum (95%) and Pachyrhizus erosus (87%). PvD1 inhibited the growth of the yeasts, Candida albicans, Candida parapsilosis, Candida tropicalis, Candida guilliermondii, Kluyveromyces marxiannus and Saccharomyces cerevisiae. PvD1 also presented an inhibitory activity against the growth of phytopathogenic fungi including Fusarium oxysporum, Fusarium solani, Fusarium lateritium and Rizoctonia solani.


Subject(s)
Antifungal Agents/isolation & purification , DNA, Complementary/metabolism , Defensins/pharmacology , Phaseolus/chemistry , Seeds/chemistry , Amino Acid Sequence , Antifungal Agents/pharmacology , Base Sequence , Cell Proliferation/drug effects , DNA, Complementary/isolation & purification , Defensins/isolation & purification , Molecular Sequence Data , Phylogeny , Yeasts/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...