Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Metab Brain Dis ; 38(8): 2615-2625, 2023 12.
Article in English | MEDLINE | ID: mdl-37921949

ABSTRACT

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been widely used due to its specific and reproducible neurotoxic effect on the nigrostriatal system, being considered a convenient model of dopaminergic neurodegeneration to study interventions therapeutics. The purple pitanga (Eugenia uniflora) is a polyphenol-rich fruit with antioxidant and antidepressant properties, among others. Therefore, this study investigated the effect of purple pitanga extract (PPE) on acute early oxidative stress induced by intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration in rats. Male Wistar rats were pre-treated orally with PPE (1000 mg/kg) or vehicle. After 24 h, MPTP (0.1 mg/10µL/nostril) or vehicle was administered bilaterally into the animal's nostrils, and 6 h later, the olfactory bulb (OB), striatum (ST), and substantia nigra (SN) were collected to evaluate the oxidative stress parameters. Our findings revealed that OB and SN were the most affected areas after 6 h of MPTP infusion; an early increase in reactive oxygen species (ROS) levels was observed, while pretreatment with a single dose of PPE prevented this increment. No differences in thiobarbituric acid reactive species (TBARS) and 3-nitrotyrosine (3-NT) formation were observed, although 4-hydroxy-2-nonenal (4-HNE) levels increased, which is the most toxic form of lipid peroxidation, in the MPTP group. The PPE pretreatment could prevent this increase by increasing the NPSH levels previously decreased by MPTP. Furthermore, PPE prevents the Na+/K + ATPase strongly inhibited by MPTP, showing the neuroprotective capacity of the PPE by inhibiting the MPTP-generated oxidation. Thus, we demonstrated for the first time the antioxidant and neuroprotective effects of PPE against the early MPTP neurotoxicity.


Subject(s)
Eugenia , Neuroprotective Agents , Rats , Male , Animals , Mice , Antioxidants/pharmacology , Antioxidants/metabolism , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Eugenia/metabolism , Rats, Wistar , Oxidative Stress , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Substantia Nigra/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Mice, Inbred C57BL , Disease Models, Animal
2.
Life Sci ; 324: 121711, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37088413

ABSTRACT

Parkinson's disease is a multisystemic neurodegenerative disorder that includes motor and non-motor symptoms, and common symptoms include memory loss and learning difficulties. Thus, we investigated the neuroprotective potential of a hydroalcoholic extract of Brazilian purple cherry (Eugenia uniflora) (HAE-BC) on memory impairments induced by intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration in rats and the involvement of hippocampal BDNF/TrkB/p75NTR pathway in its effects. Adult male Wistar rats were exposed to MPTP (1 mg/nostril) or vehicle. Twenty-four hours later, the HAE-BC treatments began at doses of 300 or 2000 mg/kg/day or vehicle for 14 days. From 7 days after the MPTP induction, the animals were subjected to behavioral tests to evaluate several cognitive paradigms. HAE-BC treatments, at both doses, blocked the MPTP-caused disruption in the social recognition memory, short- and long-term object recognition memories, and working memory. Furthermore, MPTP-induced motor deficit linked to striatal tyrosine hydroxylase levels decreased, which was blocked by HAE-BC. Our findings demonstrated that HAE-BC blocked the MPTP-induced increase in the hippocampal pro-BDNF, TrkB.t1, and p75NTR levels. The pro-BDNF/p75NTR interaction negatively regulates synaptic transmission and plasticity, and the neuroprotective effect of HAE-BC was related, at least partly, to the modulation of this hippocampal signaling pathway. Thus, our study reports the first evidence of the potential therapeutic of E. uniflora in a Parkinson's disease model in rodents.


Subject(s)
Eugenia , Neuroprotective Agents , Parkinson Disease , Rats , Animals , Male , Mice , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Brain-Derived Neurotrophic Factor/metabolism , Parkinson Disease/drug therapy , Rats, Wistar , Eugenia/metabolism , Memory Disorders/drug therapy , Memory Disorders/prevention & control , Memory Disorders/metabolism , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Disease Models, Animal , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL