Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
J Fungi (Basel) ; 10(4)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38667948

ABSTRACT

The release of extracellular vesicles (EVs) has been implicated as an alternative transport mechanism for the passage of macromolecules through the fungal cell wall, a phenomenon widely reported in yeasts but poorly explored in mycelial cells. In the present work, we have purified and characterized the EVs released by mycelia of the emerging, opportunistic, widespread and multidrug-resistant filamentous fungus Scedosporium apiospermum. Transmission electron microscopy images and light scattering measurements revealed the fungal EVs, which were observed individually or grouped with heterogeneous morphology, size and electron density. The mean diameter of the EVs, evaluated by the light scattering technique, was 179.7 nm. Overall, the structural stability of S. apiospermum EVs was preserved during incubation under various storage conditions. The lipid, carbohydrate and protein contents were quantified, and the EVs' protein profile was evidenced by SDS-PAGE, revealing proteins with molecular masses ranging from 20 to 118 kDa. Through immunoblotting, ELISA and immunocytochemistry assays, antigenic molecules were evidenced in EVs using a polyclonal serum (called anti-secreted molecules) from a rabbit inoculated with conditioned cell-free supernatant obtained from S. apiospermum mycelial cells. By Western blotting, several antigenic proteins were identified. The ELISA assay confirmed that the anti-secreted molecules exhibited a positive reaction up to a serum dilution of 1:3200. Despite transporting immunogenic molecules, S. apiospermum EVs slightly induced an in vitro cytotoxicity effect after 48 h of contact with either macrophages or lung epithelial cells. Interestingly, the pretreatment of both mammalian cells with purified EVs significantly increased the association index with S. apiospermum conidia. Furthermore, EVs were highly toxic to Galleria mellonella, leading to larval death in a typically dose- and time-dependent manner. Collectively, the results represent the first report of detecting EVs in the S. apiospermum filamentous form, highlighting a possible implication in fungal pathogenesis.

3.
Braz J Microbiol ; 54(4): 2577-2585, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37442880

ABSTRACT

Scedosporium apiospermum is a widespread, emerging, and multidrug-resistant filamentous fungus that can cause localized and disseminated infections. The initial step in the infection process involves the adhesion of the fungus to host cells and/or extracellular matrix components. However, the mechanisms of adhesion involving surface molecules in S. apiospermum are not well understood. Previous studies have suggested that the binding of fungal receptors to fibronectin enhances its ability to attach to and infect host cells. The present study investigated the effects of fibronectin on adhesion events of S. apiospermum. The results revealed that conidial cells were able to bind to both immobilized and soluble human fibronectin in a typically dose-dependent manner. Moreover, fibronectin binding was virtually abolished in trypsin-treated conidia, suggesting the proteinaceous nature of the binding site. Western blotting assay, using fibronectin and anti-fibronectin antibody, evidenced 7 polypeptides with molecular masses ranging from 55 to 17 kDa in both conidial and mycelial extracts. Fibronectin-binding molecules were localized by immunofluorescence and immunocytochemistry microscopies at the cell wall and in intracellular compartments of S. apiospermum cells. Furthermore, a possible function for the fibronectin-like molecules of S. apiospermum in the interaction with host lung cells was assessed. Conidia pre-treated with soluble fibronectin showed a significant reduction in adhesion to either epithelial or fibroblast lung cells in a classically dose-dependent manner. Similarly, the pre-treatment of the lung cells with anti-fibronectin antibodies considerably diminished the adhesion. Collectively, the results demonstrated the presence of fibronectin-binding molecules in S. apiospermum cells and their role in adhesive events.


Subject(s)
Scedosporium , Humans , Fibronectins/metabolism , Mycelium/metabolism , Lung
4.
Future Microbiol ; 18: 1049-1059, 2023 11.
Article in English | MEDLINE | ID: mdl-37284767

ABSTRACT

Background: Scedosporium/Lomentospora species are human pathogens that are resistant to almost all antifungals currently available in clinical practice. Methods: The effects of 16 1,10-phenanthroline (phen)/1,10-phenanthroline-5,6-dione/dicarboxylate chelates containing Cu(II), Mn(II) and Ag(I) against Scedosporium apiospermum, Scedosporium minutisporum, Scedosporium aurantiacum and Lomentospora prolificans were evaluated. Results: To different degrees, all of the test chelates inhibited the viability of planktonic conidial cells, displaying MICs ranging from 0.029 to 72.08 µM. Generally, Mn(II)-containing chelates were the least toxic to lung epithelial cells, particularly [Mn2(oda)(phen)4(H2O)2][Mn2(oda)(phen)4(oda)2].4H2O (MICs: 1.62-3.25 µM: selectivity indexes >64). Moreover, this manganese-based chelate reduced the biofilm biomass formation and diminished the mature biofilm viability. Conclusion: [Mn2(oda)(phen)4(H2O)2][Mn2(oda)(phen)4(oda)2].4H2O opens a new chemotherapeutic avenue for the deactivation of these emergent, multidrug-resistant filamentous fungi.


Metals have been used to treat microbial infections for centuries. In this context, the effects of 16 metal-based compounds against the human pathogens Scedosporium apiospermum, Scedosporium minutisporum, Scedosporium aurantiacum and Lomentospora prolificans were tested. All the 16 metal-based compounds were able to interfere with the viability of these fungal pathogens to different degrees. Among the 16 compounds, a manganese-containing compound presented the best activity against the fungal species and it presented the least toxicity to a human lung cell line. In addition, this manganese-containing compound reduced the ability of fungal cells to come together and form a type of community called biofilm. In conclusion, the manganese-containing compound presents a promising option against the multidrug-resistant filamentous fungi species belonging to the Scedosporium/Lomentospora genera.


Subject(s)
Ascomycota , Scedosporium , Humans , Scedosporium/physiology , Phenanthrolines/pharmacology , Antifungal Agents/pharmacology
5.
J Fungi (Basel) ; 9(5)2023 Apr 22.
Article in English | MEDLINE | ID: mdl-37233213

ABSTRACT

Over the last years, the interkingdom microbial interactions concerning bacteria and fungi cohabiting and/or responsible for human pathologies have been investigated. In this context, the Gram-negative bacterium Pseudomonas aeruginosa and fungal species belonging to the Scedosporium/Lomentospora genera are widespread, multidrug-resistant, emergent, opportunistic pathogens that are usually co-isolated in patients with cystic fibrosis. The available literature reports that P. aeruginosa can inhibit the in vitro growth of Scedosporium/Lomentospora species; however, the complex mechanisms behind this phenomenon are mostly unknown. In the present work, we have explored the inhibitory effect of bioactive molecules secreted by P. aeruginosa (3 mucoid and 3 non-mucoid strains) on S. apiospermum (n = 6 strains), S. minutisporum (n = 3), S. aurantiacum (n = 6) and L. prolificans (n = 6) under cultivation in a cystic fibrosis mimic environment. It is relevant to highlight that all bacterial and fungal strains used in the present study were recovered from cystic fibrosis patients. The growth of Scedosporium/Lomentospora species was negatively affected by the direct interaction with either mucoid or non-mucoid strains of P. aeruginosa. Moreover, the fungal growth was inhibited by the conditioned supernatants obtained from bacteria-fungi co-cultivations and by the conditioned supernatants from the bacterial pure cultures. The interaction with fungal cells induced the production of pyoverdine and pyochelin, 2 well-known siderophores, in 4/6 clinical strains of P. aeruginosa. The inhibitory effects of these four bacterial strains and their secreted molecules on fungal cells were partially reduced with the addition of 5-flucytosine, a classical repressor of pyoverdine and pyochelin production. In sum, our results demonstrated that distinct clinical strains of P. aeruginosa can behave differently towards Scedosporium/Lomentospora species, even when isolated from the same cystic fibrosis patient. Additionally, the production of siderophores by P. aeruginosa was induced when co-cultivated with Scedosporium/Lomentospora species, indicating competition for iron and deprivation of this essential nutrient, leading to fungal growth inhibition.

6.
Curr Res Microb Sci ; 4: 100191, 2023.
Article in English | MEDLINE | ID: mdl-37229517

ABSTRACT

Dispersion is an essential step in the lifecycle of biofilms, since it enables the dissemination of microbial cells and, consequently, the potential colonization of new sites. Filamentous fungi belonging to the Scedosporium/Lomentospora genera are opportunistic human pathogens able to form multidrug-resistant biofilms on surfaces of different chemical compositions, environments and nutritional conditions. Despite the rising understanding of how biofilms are formed by Scedosporium/Lomentospora species, the cell dispersal step has not yet been explored. In the present study, the cell dispersion was investigated during biofilm formation by S. apiospermum, S. minutisporum, S. aurantiacum and L. prolificans cells. The results revealed that conidia were the major type of dispersed cells, which were detected throughout biofilm development (from 24 to 72 h). Dispersion was not influenced by increased glucose concentration (the main source for energetic metabolism) neither the presence of voriconazole (the most common antifungal used to treat scedosporiosis); however, the presence of mucin (a component of mucous, present in the lungs of cystic fibrosis patients, who are usually affected by these filamentous fungi) triggered cell dispersion. Contrarily, a poor nutritional environment (e.g., phosphate-buffered saline) inhibited this step. Overall, our study reveals new insights into the biofilm development of Scedosporium/Lomentospora species.

7.
J Fungi (Basel) ; 8(11)2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36354939

ABSTRACT

The multidrug-resistant species belonging to the Scedosporium genus are well recognized as saprophytic filamentous fungi found mainly in human impacted areas and that emerged as human pathogens in both immunocompetent and immunocompromised individuals. It is well recognized that some fungi are ubiquitous organisms that produce an enormous amount of extracellular molecules, including enzymes and secondary metabolites, as part of their basic physiology in order to satisfy their several biological processes. In this context, the molecules secreted by Scedosporium species are key weapons for successful colonization, nutrition and maintenance in both host and environmental sites. These biologically active released molecules have central relevance on fungal survival when colonizing ecological places contaminated with hydrocarbons, as well as during human infection, particularly contributing to the invasion/evasion of host cells and tissues, besides escaping from the cellular and humoral host immune responses. Based on these relevant premises, the present review compiled the published data reporting the main secreted molecules by Scedosporium species, which operate important physiopathological events associated with pathogenesis, diagnosis, antimicrobial activity and bioremediation of polluted environments.

8.
J Fungi (Basel) ; 8(9)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36135688

ABSTRACT

Patients with chromoblastomycosis (CBM) suffer chronic tissue lesions that are hard to treat. Considering that biofilm is the main growth lifestyle of several pathogens and it is involved with both virulence and resistance to antimicrobial drugs, we have investigated the ability of CBM fungi to produce this complex, organized and multicellular structure. Fonsecaea pedrosoi and Phialophora verrucosa conidial cells were able to adhere on a polystyrene abiotic substrate, differentiate into hyphae and produce a robust viable biomass containing extracellular matrix. Confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) showed the tridimensional architecture of the mature biofilms, revealing a dense network of interconnected hyphae, inner channels and amorphous extracellular polymeric material. Interestingly, the co-culture of each fungus with THP-1 macrophage cells, used as a biotic substrate, induced the formation of a mycelial trap covering and damaging the macrophages. In addition, the biofilm-forming cells of F. pedrosoi and P. verrucosa were more resistant to the conventional antifungal drugs than the planktonic-growing conidial cells. The efflux pump activities of P. verrucosa and F. pedrosoi biofilms were significantly higher than those measured in conidia. Taken together, the data pointed out the biofilm formation by CBM fungi and brought up a discussion of the relevance of studies about their antifungal resistance mechanisms.

9.
Med Mycol ; 60(6)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35641191

ABSTRACT

The opportunistic filamentous fungi belonging to the Scedosporium and Lomentospora genera are highly tolerant to all classes of available antifungal drugs. Moreover, the mature biofilm formed by these fungi presents higher antifungal resistance when compared to planktonic cells. Nevertheless, the resistance mechanisms developed by the biofilm lifestyle are not completely elucidated. In the current study, we have investigated the mainly known resistance mechanisms to azoles (voriconazole and fluconazole) and polyenes (amphotericin B [AMB]) in S. apiospermum, S. minutisporum, S. aurantiacum, and L. prolificans (formerly S. prolificans) biofilms. Both classes of antifungals can physically bind to the extracellular matrix of mature biofilms, preventing the drugs from reaching their targets on biofilm-forming cells, which precludes their activity and toxicity. In addition, the activity of efflux pumps, measured by Rhodamine 6 G, was increased along with the maturation of the biofilm. The efflux pump's inhibition by L-Phe-L-Arg-ß-naphthylamide culminated in a 2- to 16-fold increase in azole susceptibility in conidial cells, but not in mature biofilms. Finally, we demonstrated by using specific inhibitors that in conidia, but not in biofilms, AMB induced the production of reactive oxygen species through the activity of the oxidative phosphorylation system (complex I-IV and alternative oxidases). However, the cellular redox imbalance caused by AMB was well-coped with the high activity of antioxidative enzymes, such as superoxide dismutase and catalase. Altogether, our results revealed that Scedosporium/Lomentospora biofilm resistance occurs through various mechanisms that operate concomitantly, which could explain the huge challenge in the clinical treatment of scedosporiosis/lomentosporiosis. LAY SUMMARY: Scedosporium/Lomentospora spp. are multidrug-resistant pathogens able to cause diverse types of infections with typical biofilm characteristics, which makes the treatment a hard issue. We deciphered the resistance mechanisms to classical antifungals developed in the biofilm formed by these fungi.


Subject(s)
Ascomycota , Scedosporium , Amphotericin B , Animals , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Biofilms , Drug Resistance, Fungal , Microbial Sensitivity Tests/veterinary , Spores, Fungal
10.
Front Microbiol ; 12: 641258, 2021.
Article in English | MEDLINE | ID: mdl-34025603

ABSTRACT

Phialophora verrucosa is a dematiaceous fungus that causes mainly chromoblastomycosis, but also disseminated infections such as phaeohyphomycosis and mycetoma. These diseases are extremely hard to treat and often refractory to current antifungal therapies. In this work, we have evaluated the effect of 1,10-phenanthroline-5,6-dione (phendione) and its metal-based complexes, [Ag (phendione)2]ClO4 and [Cu(phendione)3](ClO4)2.4H2O, against P. verrucosa, focusing on (i) conidial viability when combined with amphotericin B (AmB); (ii) biofilm formation and disarticulation events; (iii) in vitro interaction with human macrophages; and (iv) in vivo infection of Galleria mellonella larvae. The combination of AmB with each of the test compounds promoted the additive inhibition of P. verrucosa growth, as judged by the checkerboard assay. During the biofilm formation process over polystyrene surface, sub-minimum inhibitory concentrations (MIC) of phendione and its silver(I) and copper(II) complexes were able to reduce biomass and extracellular matrix production. Moreover, a mature biofilm treated with high concentrations of the test compounds diminished biofilm viability in a concentration-dependent manner. Pre-treatment of conidial cells with the test compounds did not alter the percentage of infected THP-1 macrophages; however, [Ag(phendione)2]ClO4 caused a significant reduction in the number of intracellular fungal cells compared to the untreated system. In addition, the killing process was significantly enhanced by post-treatment of infected macrophages with the test compounds. P. verrucosa induced a typically cell density-dependent effect on G. mellonella larvae death after 7 days of infection. Interestingly, exposure to the silver(I) complex protected the larvae from P. verrucosa infection. Collectively, the results corroborate the promising therapeutic potential of phendione-based drugs against fungal infections, including those caused by P. verrucosa.

11.
J Cyst Fibros ; 20(2): 303-309, 2021 03.
Article in English | MEDLINE | ID: mdl-33334714

ABSTRACT

BACKGROUND: Scedosporium species are the second most isolated filamentous fungi from cystic fibrosis (CF) patients; however, little is known about their virulence aspects in a CF environment. In this context, the current study aimed to evaluate the (i) antifungal susceptibility profiles, (ii) ability to form biofilm and (iii) impact of biofilm formation on the susceptibility to azoles in 21 clinical isolates of Scedosporium recovered from CF patients. METHODS: Scedosporium apiospermum (n=6), S. aurantiacum (n=6), S. minutisporum (n=3) and Lomentospora prolificans (n=6) were firstly used to compare the antifungal susceptibility profile using a standard culture broth (RPMI-1640) and a mucin (M)-containing synthetic CF sputum medium (SCFM). The ability to form biofilms was investigated in polystyrene microtiter plates containing Sabouraud-dextrose (a classical medium), SCFM and SCFM+M. Mature biofilms were tested for their susceptibility to azoles by microdilution assay. RESULTS: Our results showed that the minimum inhibitory concentrations (MICs) for planktonic conidia ranged from 0.25 to >16.0 mg/L for voriconazole and 1.0 to >16.0 mg/L for posaconazole. Overall, the MICs for azoles increased from 2- to 8-folds when the susceptibility tests were performed using SCFM+M compared to RPMI-1640. All fungi formed robust biofilms on polystyrene surface at 72 h, with a significant increase in the MICs (ranging from 128- to 1024-times) against both azoles compared to the planktonic cells. CONCLUSION: These findings confirm the challenge of antifungal treatment of CF patients infected with Scedosporium/Lomentospora and also demonstrated a strong biofilm formation, with extensive increase in antifungal resistance, triggered underconditions mimicking the CF patient airway.


Subject(s)
Antifungal Agents/pharmacology , Azoles/pharmacology , Biofilms/drug effects , Cystic Fibrosis/complications , Scedosporium/drug effects , Drug Resistance, Fungal , Humans , In Vitro Techniques , Invasive Fungal Infections/drug therapy , Lung Diseases, Fungal/drug therapy , Lung Diseases, Fungal/microbiology , Microbial Sensitivity Tests
12.
Biofouling ; 36(3): 308-318, 2020 03.
Article in English | MEDLINE | ID: mdl-32401558

ABSTRACT

In the present study, the composition of the extracellular matrix (ECM) of the biofilm formed by Scedosporium apiospermum, S. aurantiacum, S. minutisporum and Lomentospora prolificans on a polystyrene surface was investigated. Confocal laser scanning microscopy revealed a dense mycelial mass, with an ECM covering/interspersing the fungal cells and containing carbohydrate-rich molecules (e.g. glycoproteins) and extracellular DNA. The ECMs that were chemically extracted from mature biofilms formed by each of these fungi was predominantly composed of polysaccharides, followed by proteins, nucleic acids and sterols. In general, the amount of biofilm ECM was significantly greater in S. minutisporum and S. aurantiacum than in S. apiospermum and L. prolificans. Corroborating these results, the disarticulation of mature biofilms with enzymes, sodium metaperiodate and chelating agents occurred mainly in S. minutisporum and S. aurantiacum. Collectively, these results have revealed for the first time the composition of the ECM of the biofilms formed by Scedosporium/Lomentospora species and the role it plays in their architecture.


Subject(s)
Ascomycota/growth & development , Biofilms/growth & development , Extracellular Matrix/metabolism , Scedosporium/growth & development , Ascomycota/metabolism , Humans , Microscopy, Confocal , Polystyrenes/chemistry , Scedosporium/metabolism , Surface Properties
13.
J Fungi (Basel) ; 6(2)2020 Apr 03.
Article in English | MEDLINE | ID: mdl-32260180

ABSTRACT

Candida haemulonii species complex (C. haemulonii, C. duobushaemulonii, and C. haemulonii var. vulnera) has emerged as opportunistic, multidrug-resistant yeasts able to cause fungemia. Previously, we showed that C. haemulonii complex formed biofilm on polystyrene. Biofilm is a well-known virulence attribute of Candida spp. directly associated with drug resistance. In the present study, the architecture and the main extracellular matrix (ECM) components forming the biofilm over polystyrene were investigated in clinical isolates of the C. haemulonii complex. We also evaluated the ability of these fungi to form biofilm on catheters used in medical arena. The results revealed that all fungi formed biofilms on polystyrene after 48 h at 37 °C. Microscopic analyses demonstrated a dense network of yeasts forming the biofilm structure, with water channels and ECM. Regarding ECM, proteins and carbohydrates were the main components, followed by nucleic acids and sterols. Mature biofilms were also detected on late bladder (siliconized latex), nasoenteric (polyurethane), and nasogastric (polyvinyl chloride) catheters, with the biomasses being significantly greater than on polystyrene. Collectively, our results demonstrated the ability of the C. haemulonii species complex to form biofilm on different types of inert surfaces, which is an incontestable virulence attribute associated with devices-related candidemia in hospitalized individuals.

14.
Front Microbiol ; 10: 1701, 2019.
Article in English | MEDLINE | ID: mdl-31428062

ABSTRACT

Elastase B (lasB) is a multifunctional metalloenzyme secreted by the gram-negative pathogen Pseudomonas aeruginosa, and this enzyme orchestrates several physiopathological events during bacteria-host interplays. LasB is considered to be a potential target for the development of an innovative chemotherapeutic approach, especially against multidrug-resistant strains. Recently, our group showed that 1,10-phenanthroline-5,6-dione (phendione), [Ag(phendione)2]ClO4 (Ag-phendione) and [Cu(phendione)3](ClO4)2.4H2O (Cu-phendione) had anti-P. aeruginosa action against both planktonic- and biofilm-growing cells. In the present work, we have evaluated the effects of these compounds on the (i) interaction with the lasB active site using in silico approaches, (ii) lasB proteolytic activity by using a specific fluorogenic peptide substrate, (iii) lasB gene expression by real time-polymerase chain reaction, (iv) lasB protein secretion by immunoblotting, (v) ability to block the damages induced by lasB on a monolayer of lung epithelial cells, and (vi) survivability of Galleria mellonella larvae after being challenged with purified lasB and lasB-rich bacterial secretions. Molecular docking analyses revealed that phendione and its Ag+ and Cu2+ complexes were able to interact with the amino acids forming the active site of lasB, particularly Cu-phendione which exhibited the most favorable interaction energy parameters. Additionally, the test compounds were effective inhibitors of lasB activity, blocking the in vitro cleavage of the peptide substrate, aminobenzyl-Ala-Gly-Leu-Ala-p-nitrobenzylamide, with Cu-phendione having the best inhibitory action (K i = 90 nM). Treating living bacteria with a sub-inhibitory concentration (½ × MIC value) of the test compounds caused a significant reduction in the expression of the lasB gene as well as its mature protein production/secretion. Further, Ag-phendione and Cu-phendione offered protective action for lung epithelial cells, reducing the A549 monolayer damage by approximately 32 and 42%, respectively. Interestingly, Cu-phendione mitigated the toxic effect of both purified lasB molecules and lasB-containing bacterial secretions in the in vivo model, increasing the survival time of G. mellonella larvae. Collectively, these data reinforce the concept of lasB being a veritable therapeutic target and phendione-based compounds (mainly Cu-phendione) being prospective anti-virulence drugs against P. aeruginosa.

15.
Mem Inst Oswaldo Cruz ; 113(10): e180311, 2018 Oct 08.
Article in English | MEDLINE | ID: mdl-30304087

ABSTRACT

BACKGROUND: Scedosporium apiospermum is a ubiquitous, emerging and multidrug-resistant fungal pathogen with still rather unknown virulence mechanisms. OBJECTIVES/METHODS: The cellular basis of the in vitro interaction between fungi and host cells/tissues is the determinant factor for the development of a successful in vivo infection. Herein, we evaluated the interaction of S. apiospermum conidia with lung epithelial (A549), lung fibroblast (MRC-5) and RAW 264.7 macrophages by light and scanning/transmission electron microscopy. FINDINGS: After 4 h of fungi-host cell contact, the percentage of infected mammalian cells and the number of fungi per infected cell was measured by light microscopy, and the following association indexes were calculated for A549, MRC-5 and macrophage cells: 73.2 ± 25.9, 69.7 ± 22.5 and 59.7 ± 11.1, respectively. Both conidia and germinated conidia were regularly observed interacting with the evaluated cells, with a higher prevalence of non-germinated conidia. Interestingly, nests of germinated conidia were evidenced at the surface of lung cells by scanning electron microscopy. Some germination projections and hyphae were seen penetrating/evading the mammalian cells. Furthermore, internalised conidia were seen within vacuoles as visualised by transmission electron microscopy. MAIN CONCLUSIONS: The present study contributes to a better understanding of S. apiospermum pathogenesis by demonstrating the first steps of the infection process of this opportunistic fungus.


Subject(s)
Epithelial Cells/microbiology , Lung/microbiology , Macrophages/microbiology , Scedosporium/ultrastructure , Spores, Fungal/ultrastructure , Epithelial Cells/ultrastructure , Humans , Lung/ultrastructure , Macrophages/ultrastructure , Microscopy, Electron, Scanning , Scedosporium/physiology , Spores, Fungal/physiology
16.
Biofouling ; 34(7): 800-814, 2018 08.
Article in English | MEDLINE | ID: mdl-30354689

ABSTRACT

In the present work, some surface properties of the fungi Scedosporium apiospermum, S. aurantiacum, S. minutisporum, and Lomentospora prolificans and their capability to adhere to and form a biofilm on diverse surfaces were evaluated. All four species had high conidial surface hydrophobicity and elevated electronegative zeta potentials. Abundant quantities of melanin were detected at the conidial surface, whereas sialic acid was absent. The numbers of non-germinated and germinated conidia adhered to poly-L-lysine-covered slides was higher than on glass after 4 h of fungi-surface contact. Additionally, after 72 h of interaction a typical biofilm structure had formed. Mature biofilms were also observed after 72 h on a nasogastric catheter (made from polyvinyl chloride), a late bladder catheter (siliconized latex), and a nasoenteric catheter (polyurethane). Interestingly, biofilm biomass increased considerably when the catheters had previously been incubated with serum. These results confirm that Scedosporium/Lomentospora spp. are capable of forming biofilms on diverse abiotic surfaces.


Subject(s)
Ascomycota/chemistry , Biofilms , Scedosporium/chemistry , Spores, Fungal/chemistry , Catheters/microbiology , Hydrophobic and Hydrophilic Interactions , Melanins/chemistry , Surface Properties
17.
Front Microbiol ; 9: 1432, 2018.
Article in English | MEDLINE | ID: mdl-30013535

ABSTRACT

Mycobacterium tuberculosis is the etiologic agent of tuberculosis. The demand for new chemotherapeutics with unique mechanisms of action to treat (multi)resistant strains is an urgent need. The objective of this work was to test the effect of manganese(II) and copper(II) phenanthroline/dicarboxylate complexes against M. tuberculosis. The water-soluble Mn(II) complexes, [Mn2(oda)(phen)4(H2O)2][Mn2(oda)(phen)4(oda)2]·4H2O (1) and {[Mn(3,6,9-tdda)(phen)2]·3H2O·EtOH}n (3) (odaH2 = octanedioic acid, phen = 1,10-phenanthroline, tddaH2 = 3,6,9-trioxaundecanedioic acid), and water-insoluble complexes, [Mn(ph)(phen)(H2O)2] (5), [Mn(ph)(phen)2(H2O)]·4H2O (6), [Mn2(isoph)2(phen)3]·4H2O (7), {[Mn(phen)2(H2O)2]}2(isoph)2(phen)·12H2O (8) and [Mn(tereph)(phen)2]·5H2O (9) (phH2 = phthalic acid, isophH2 = isophthalic acid, terephH2 = terephthalic acid), robustly inhibited the viability of M. tuberculosis strains, H37Rv and CDC1551. The water-soluble Cu(II) analog of (1), [Cu2(oda)(phen)4](ClO4)2·2.76H2O·EtOH (2), was significantly less effective against both strains. Whilst (3) retarded H37Rv growth much better than its soluble Cu(II) equivalent, {[Cu(3,6,9-tdda)(phen)2]·3H2O·EtOH}n (4), both were equally efficient against CDC1551. VERO and A549 mammalian cells were highly tolerant to the Mn(II) complexes, culminating in high selectivity index (SI) values. Significantly, in vivo studies using Galleria mellonella larvae indicated that the metal complexes were minimally toxic to the larvae. The Mn(II) complexes presented low MICs and high SI values (up to 1347), indicating their auspicious potential as novel antitubercular lead agents.

18.
Mem. Inst. Oswaldo Cruz ; 113(10): e180311, 2018. graf
Article in English | LILACS | ID: biblio-955107

ABSTRACT

BACKGROUND Scedosporium apiospermum is a ubiquitous, emerging and multidrug-resistant fungal pathogen with still rather unknown virulence mechanisms. OBJECTIVES/METHODS The cellular basis of the in vitro interaction between fungi and host cells/tissues is the determinant factor for the development of a successful in vivo infection. Herein, we evaluated the interaction of S. apiospermum conidia with lung epithelial (A549), lung fibroblast (MRC-5) and RAW 264.7 macrophages by light and scanning/transmission electron microscopy. FINDINGS After 4 h of fungi-host cell contact, the percentage of infected mammalian cells and the number of fungi per infected cell was measured by light microscopy, and the following association indexes were calculated for A549, MRC-5 and macrophage cells: 73.2 ± 25.9, 69.7 ± 22.5 and 59.7 ± 11.1, respectively. Both conidia and germinated conidia were regularly observed interacting with the evaluated cells, with a higher prevalence of non-germinated conidia. Interestingly, nests of germinated conidia were evidenced at the surface of lung cells by scanning electron microscopy. Some germination projections and hyphae were seen penetrating/evading the mammalian cells. Furthermore, internalised conidia were seen within vacuoles as visualised by transmission electron microscopy. MAIN CONCLUSIONS The present study contributes to a better understanding of S. apiospermum pathogenesis by demonstrating the first steps of the infection process of this opportunistic fungus.


Subject(s)
Humans , Scedosporium , Macrophages , Carcinoma, Non-Small-Cell Lung , Host Cell Factor C1
19.
Front Microbiol ; 8: 1257, 2017.
Article in English | MEDLINE | ID: mdl-28744261

ABSTRACT

Candida haemulonii, Candida haemulonii var. vulnera and Candida duobushaemulonii, which form the C. haemulonii complex, are emerging etiologic agents of fungal infections known to be resistant to the most commonly used antifungals. The well-established anti-Candida potential of metal complexes containing 1,10-phenanthroline (phen) ligands encouraged us to evaluate different copper(II), manganese(II), and silver(I) phen chelates for their ability to inhibit planktonic growth and biofilm of C. haemulonii species complex. Two novel coordination complexes, {[Cu(3,6,9-tdda)(phen)2].3H2O.EtOH}n and [Ag2(3,6,9-tdda)(phen)4].EtOH (3,6,9-tddaH2 = 3,6,9-trioxaundecanedioic acid), were synthesized in a similar fashion to the other, previously documented, sixteen copper(II), manganese(II), and silver(I) chelates employed herein. Three isolates of each C. haemulonii species complex were used and the effect of the metal chelates on viability was determined utilizing the CLSI standard protocol and on biofilm-growing cells using the XTT assay. Cytotoxicity of the chelates was evaluated by the MTT assay, employing lung epithelial cells. The majority of the metal chelates were capable of interfering with the viability of planktonic-growing cells of all the fungal isolates. The silver complexes were the most effective drugs (overall geometric mean of the minimum inhibitory concentration (GM-MIC) ranged from 0.26 to 2.16 µM), followed by the manganese (overall GM-MIC ranged from 0.87 to 10.71 µM) and copper (overall GM-MIC ranged from 3.37 to >72 µM) chelates. The manganese chelates (CC50 values ranged from 234.51 to >512 µM) were the least toxic to the mammalian cells, followed by the silver (CC50 values ranged from 2.07 to 13.63 µM) and copper (CC50 values ranged from 0.53 to 3.86 µM) compounds. When tested against mature biofilms, the chelates were less active, with MICs ranging from 2- to 33-fold higher levels when compared to the planktonic MIC counterparts. Importantly, manganese(II), copper(II), and silver(I) phen chelates are relatively cheap and easy to synthesize and they offer significant antifungal chemotherapeutic potential for the treatment of highly resistant pathogens.

20.
Biofouling ; 32(7): 737-49, 2016 08.
Article in English | MEDLINE | ID: mdl-27309801

ABSTRACT

Reported herein is the ability of Scedosporium apiospermum, S. aurantiacum, S. minutisporum and Lomentospora prolificans conidia to adhere, differentiate into hyphae and form biofilms on both polystyrene and lung epithelial cells. To different degrees, all of the fungi adhered to polystyrene after 4 h, with a predominance of those with germinated conidia. Prolonged fungi-polystyrene contact resulted in the formation of a monolayer of intertwined mycelia, which was identified as a typical biofilm structure due to the presence of a viable mycelial biomass, extracellular matrix and enhanced antifungal resistance. Ultrastructural details were revealed by SEM and CLSM, showing the dense compaction of the mycelial biomass and the presence of channels within the organized biofilm. A similar biofilm structure was observed following the co-culture of each fungus with A549 cells, revealing a mycelial trap covering all of the lung epithelial monolayer. Collectively, these results highlight the potential for biofilm formation by these clinically relevant fungal pathogens.


Subject(s)
Ascomycota/physiology , Biofilms/growth & development , Epithelial Cells/microbiology , Hyphae/growth & development , Polystyrenes , Scedosporium/physiology , A549 Cells , Ascomycota/ultrastructure , Bacterial Adhesion , Biomass , Humans , Microscopy, Confocal , Microscopy, Electron, Scanning , Polystyrenes/chemistry , Scedosporium/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...