Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Acta Biomed ; 94(2): e2023084, 2023 04 24.
Article in English | MEDLINE | ID: mdl-37092633

ABSTRACT

BACKGROUND AND AIM: VAP remains the second leading cause of death among the patients with nosocomial infections and its incidence varies significantly from 5% to 60% reaching on average 10 %. It is of crucial importance to develop novel treatment approaches and optimize the existing ones. Thus, the aim of this pilot study was to study the laboratory-microbiological effect of inhaled aminoglycosides in a complex treatment of patients with ventilator-associatedpneumonia(VAP).  Methods: To study the laboratory-microbiological effect of adjunctive inhaled aminoglycosides in the treatment of VAP, twenty enrolled patients were randomly subdivided into 2 groups (n=10). Amikacin was administered via a nebulizer starting from the first day of VAP manifestation. Inhalations were performed BID for 7 days via a nebulizer integrated into the breathing circuit. We assessed: cell membrane alterations in leukocytes, Annexin V/7-AAD staining for leukocytes, ROS detection assay for leukocytes. RESULTS: Adjunctive administration of inhaled amikacin reduced the fluorescence intensity ratio more efficiently compared with the intravenous antimicrobial treatment with no aerosolized amikacin following both 48 h and 96 h of treatment. The amount of dead necrotic annexin V-negative, 7-AAD-positive leukocytes was significantly lower under the use of inhaled amikacin than at the beginning of treatment. Conclusions In this pilot study, we found that administration of aerosolized amikacin combined with the systemic antimicrobial therapy improves the clinical outcome of patients with VAP, effective early microbial decrease in the sputum, reduces reactive oxygen species generation in leukocytes and the degree of leukocyte apoptosis and necrosis, decreases VAP-mediated cell membrane alterations of circulating leukocytes.


Subject(s)
Amikacin , Pneumonia, Ventilator-Associated , Humans , Infant , Amikacin/therapeutic use , Amikacin/adverse effects , Pneumonia, Ventilator-Associated/etiology , Pneumonia, Ventilator-Associated/microbiology , Pilot Projects , Annexin A5/therapeutic use , Administration, Inhalation , Anti-Bacterial Agents/adverse effects , Aminoglycosides
2.
Acute Crit Care ; 37(4): 636-643, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36330739

ABSTRACT

BACKGROUND: The aim of this study was to evaluate the hemodynamic protective effects of perioperative ventilation in pressure-controlled ventilation (PCV) and adaptive support ventilation (ASV) modes based on non-invasive hemodynamic monitoring indicators. METHODS: The study included 32 patients who were scheduled for planned open abdominal surgery. Depending on the chosen ventilation strategy, patients were included in two groups of PCV mode ventilation (n=14) and ASV mode ventilation (n=18). The hemodynamic effects of the ventilation strategies were assessed by estimated continuous cardiac output (esCCO) and cardiac index (esCCI). RESULTS: Preoperative cardiac output (CO) was 6.1±1.3 L/min in group 1 patients and 6.3±0.8 L/min in group 2 patients, and preoperative cardiac index (CI) was 3.9±0.4 L/min/m2 in group 1 patients and 3.8±0.8 L/min/m2 in group 2 patients. The ejection fraction (EF) in group 1 subjects was 55.4%±0.3%; this rate was 56.5%±0.5% in group 2 subjects. Group 1 patients experienced a 14.7% CO decrease to 5.2±0.7 L/min, a 17.9% CI decrease to 3.2±0.6 L/min/m2 , and a 12.8% mean arterial pressure decrease to 82.3±9.4 mm Hg 30 minutes after the start of surgery. One hour after the start of surgery, the CO mean values of group 2 patients were lower than baseline by 7.9% and differed from the dynamics of patients in group 1, in whom CO was lower than baseline by 13.1%. At the end of the operation, the CO values were lower than baseline by 11.5% and 6.3% in patients of groups 1 and 2, respectively. Our data showed that the changes in EF during and after surgery correlated with CO indicators determined by the esCCO. CONCLUSIONS: In our study, perioperative ventilation in ASV mode was more protective than PCV mode and was characterized by lower tidal volume (16.2%) and driving pressure (12.1%). Hemodynamically-controlled mechanical ventilation reduces the negative impact of cardiopulmonary interactions.

3.
Front Med (Lausanne) ; 9: 935331, 2022.
Article in English | MEDLINE | ID: mdl-36262276

ABSTRACT

Enhanced Recovery After Surgery (ERAS) protocols are increasingly used in the perioperative period around the world. The concept of goal-directed fluid therapy (GDT) is a key element of the ERAS protocols. Inadequate perioperative infusion therapy can lead to a number of complications, including the development of an infectious process, namely surgical site infections, pneumonia, urinary tract infections. Optimal infusion therapy is difficult to achieve with standard parameters (e.g., heart rate, blood pressure, central venous pressure), so there are various methods of monitoring central hemodynamics - from invasive, minimally invasive to non-invasive. The latter are increasingly used in clinical practice. The current evidence base shows that perioperative management, specifically the use of GDT guided by real-time, continuous hemodynamic monitoring, helps clinicians maintain a patient's optimal fluid balance. The manuscript presents the analytical data, which describe the benefits and basic principles of perioperative targeted infusion therapy based on central hemodynamic parameters to reduce the risk of complications.

4.
Clin Case Rep ; 10(10): e6433, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36245449

ABSTRACT

The ongoing conflict in Ukraine continues to generate many complex traumatic injuries and provides unique challenges to anaesthesiologists who provide medical care at various levels of medical evacuation. We report the successful use of an ultrasound-guided continuous erector spinae plane (ESP) block in a patient with severe posterolateral chest trauma. The acute perioperative outcome of the patient was improved with the ESP block, the main benefits being excellent analgesia and minimal postoperative morphine requirements without influencing the risk of bleeding and coagulopathy. We conclude that continuous ESP block can be utilized to provide excellent analgesia following massive thoracic trauma. It's ease of placement under ultrasound guidance and low risk of complications makes this technique particularly useful in war medicine.

5.
Nanoscale Res Lett ; 12(1): 406, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28618717

ABSTRACT

In the present work, we have investigated the concentration dependences of electrical conductivity of monopolymer composites with graphite nanoplatelets or multiwall carbon nanotubes and hybrid composites with both multiwall carbon nanotubes and graphite nanoplatelets. The latter filler was added to given systems in content of 0.24 vol%. The content of multiwall carbon nanotubes is varied from 0.03 to 4 vol%. Before incorporation into the epoxy resin, the graphite nanoplatelets were subjected to ultraviolet ozone treatment for 20 min. It was found that the addition of nanocarbon to the low-viscosity suspension (polymer, acetone, hardener) results in formation of two percolation transitions. The percolation transition of the composites based on carbon nanotubes is the lowest (0.13 vol%).It was determined that the combination of two electroconductive fillers in the low-viscosity polymer results in a synergistic effect above the percolation threshold, which is revealed in increase of the conductivity up to 20 times. The calculation of the number of conductive chains in the composite and contact electric resistance in the framework of the model of effective electrical resistivity allowed us to explain the nature of synergistic effect. Reduction of the electric contact resistance in hybrid composites may be related to a thinner polymer layer between the filler particles and the growing number of the particles which take part in the electroconductive circuit.

SELECTION OF CITATIONS
SEARCH DETAIL