Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(5)2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35268733

ABSTRACT

Myracrodruon urundeuva Fr. Allem. (Anacardiaceae) is a tree popularly known as the "aroeira-do-sertão", native to the caatinga and cerrado biomes, with a natural dispersion ranging from the Northeast, Midwest, to Southeast Brazil. Its wood is highly valued and overexploited, due to its characteristics such as durability and resistance to decaying. The diversity of chemical constituents in aroeira seed has shown biological properties against microorganisms and helminths. As such, this work aimed to identify the profile of volatile compounds present in aroeira seeds. Headspace solid phase microextraction was employed (HS-SPME) using semi-polar polydimethylsiloxane-divinylbenzene fiber (PDMS/DVB) for the extraction of VOCs. 22 volatile organic compounds were identified: nine monoterpenes and eight sesquiterpenes, in addition to six compounds belonging to different chemical classes such as fatty acids, terpenoids, salicylates and others. Those that stood out were p-mentha-1,4, 4(8)-diene, 3-carene (found in all samples), caryophyllene and cis-geranylacetone. A virtual docking analysis suggested that around 65% of the VOCs molar content from the aroeiras seeds present moderate a strong ability to bind to cyclooxygenase I (COX-I) active site, oxide nitric synthase (iNOS) active site (iNOSas) or to iNOS cofactor site (iNOScs), corroborating an anti-inflamatory potential. A pharmacophoric descriptor analysis allowed to infer the more determinant characteristics of these compounds' conferring affinity to each site. Taken together, our results illustrate the high applicability for the integrated use of SPME, in silico virtual screening and chemoinformatics tools at the profiling of the biotechnological and pharmaceutical potential of natural sources.


Subject(s)
Solid Phase Microextraction
2.
Molecules ; 27(3)2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35164199

ABSTRACT

Eugenia klotzschiana O. Berg is a native species to the Cerrado biome with significant nutritional value. However, its volatile organic compounds (VOCs) chemical profile is not reported in the scientific literature. VOCs are low molecular weight chemical compounds capable of conferring aroma to fruit, constituting quality markers, and participating in the maintenance and preservation of fruit species. This work studied and determined the best conditions for extraction and analysis of VOCs from the pulp of Eugenia klotzschiana O. Berg fruit and identified and characterized its aroma. Headspace solid-phase microextraction (HS-SPME) was employed using different fiber sorbents: DVB/CAR/PDMS, PDMS/DVB, and PA. Gas chromatography and mass spectrometry (GC-MS) were employed to separate, detect, and identify VOCs. Variables of time and temperature of extraction and sample weight distinctly influenced the extraction of volatiles for each fiber. PDMS/DVB was the most efficient, followed by PA and CAR/PDMS/DVB. Thirty-eight compounds that comprise the aroma were identified among sesquiterpenes (56.4%) and monoterpenes (30.8%), such as α-fenchene, guaiol, globulol, α-muurolene, γ-himachalene, α-pinene, γ-elemene, and patchoulene.


Subject(s)
Eugenia/chemistry , Volatile Organic Compounds/isolation & purification , Gas Chromatography-Mass Spectrometry/methods , Solid Phase Microextraction/methods
3.
Plants (Basel) ; 10(8)2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34451661

ABSTRACT

The characterization of plant compounds with pharmacological activity is a field of great relevance in research and development. As such, identification techniques with the goal of developing new drugs or even validating the bioactive properties of extracts must be explored in order to further expand the knowledge of plant extract composition. Most works in this field employ HPLC, when exploring non-structural and cell wall carbohydrates from Rhynchelytrum repens. Phenolic compounds were studied by classical chromatography techniques and UV-vis spectrophotometry, with C-glycosylated flavonoids being detected but with no further details regarding the chemical structure of these compounds. In this work we employ paper spray ionization mass spectrometry (PS-MS) for the evaluation of the chemical profile of R. repens methanol extract. Positive ionization mode identified 15 compounds, belonging to flavonoids, fatty acids, and other classes of compounds; negative mode ionization was able to identify 20 compounds comprising the classes of quinic acids, stilbenes and flavonoids. PS-MS proved effective for the evaluation of R. repens extracts, making it possible to identify a total of thirty-five compounds. The bioactive properties attributed to R. repens were confirmed by the identification and characterization of compounds identified by PS-MS.

4.
Waste Manag ; 40: 144-50, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25728092

ABSTRACT

This paper presents, for the first time, the recycling and use of spent Li-ion battery cathode tape as a catalyst in the degradation of an organic dye. In our proposal, two major environmental problems can be solved: the secure disposal of cell phone batteries and the treatment of effluents with potentially toxic organic dyes. The spent Li-ion battery cathode investigated in this paper corresponds to 29% of the mass of Li-ion batteries and is made up of 83% LiCoO2, 14.5% C and less than 2.5% Al, Al2O3 and Co3O4. The use of spent Li-ion battery cathode tape increased the degradation velocity constant of methylene blue in the absence of light by about 200 times in relation to pure H2O2. This increase can be explained by a reduction in the activation energy from 83 kJ mol(-1) to 26 kJ mol(-1). The mechanism of degradation promoted by LiCoO2 is probably related to the generation of superoxide radical (O2(-)). The rupture of the aromatic rings of methylene blue was analyzed by ESI-MS.


Subject(s)
Electric Power Supplies , Electronic Waste , Environmental Restoration and Remediation/methods , Lithium/chemistry , Recycling/methods , Catalysis , Cell Phone , Electrodes , Hydrogen Peroxide/chemistry , Hydrogen-Ion Concentration , Ions , Mass Spectrometry , Methylene Blue/chemistry , Oxidation-Reduction , Spectrometry, Mass, Electrospray Ionization , Superoxides/chemistry , Thermogravimetry
SELECTION OF CITATIONS
SEARCH DETAIL
...