Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-39005274

ABSTRACT

Immunotherapies such as checkpoint inhibitors (CPI) are effective in treating several advanced cancers, but these treatments have had limited success in metastatic ovarian cancer (OC). Here, we engineered liposomal nanoparticles (NPs) carrying a layer-by-layer (LbL) polymer coating that promotes their binding to the surface of OC cells. Covalent anchoring of the potent immunostimulatory cytokine interleukin-12 (IL-12) to phospholipid headgroups of the liposome core enabled the LbL particles to concentrate IL-12 in disseminated OC tumors following intraperitoneal administration. Shedding of the LbL coating and serum protein-mediated extraction of IL-12-conjugated lipids from the liposomal core over time enabled IL-12 to disseminate in the tumor bed following rapid NP localization in tumor nodules. Optimized IL-12 LbL-NPs promoted robust T cell accumulation in ascites and tumors in mouse models, extending survival compared to free IL-12 and remarkedly sensitizing tumors to CPI, leading to curative treatments and immune memory.

2.
NPJ Vaccines ; 9(1): 72, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575581

ABSTRACT

Varicella zoster virus (VZV) is a highly contagious human herpes virus responsible for causing chickenpox (varicella) and shingles (herpes zoster). Despite the approval of a highly effective vaccine, Shingrix®, the global incidence of herpes zoster is increasing and the economic burden to the health care system and society are substantial due to significant loss of productivity and health complications, particularly among elderly and immunocompromised individuals. This is primarily because access to the vaccines remains mostly limited to countries within developed economies, such as USA and Canada. Therefore, similarly effective vaccines against VZV that are more accessible to the rest-of-the-world are necessary. In this study, we aimed to evaluate immunogenicity and memory response induced by three mRNA-LNP-based vaccine candidates targeting VZV's surface glycoprotein E (gE). C57BL/6 mice were immunized with each candidate vaccine, and humoral and cellular immune responses were assessed. Our results demonstrate that the mRNA-LNP-based vaccine candidates elicited robust and durable humoral responses specific to the gE antigen. Notably, mice vaccinated with the mRNA-LNP vaccines exhibited significantly higher antigen-specific T-cell cytokine production compared to the group receiving Shingrix®, the current standard of care vaccine. Additionally, mRNA-LNP vaccines induced long-lasting memory response, as evidenced by detection of persistent gE-specific Long-Lived Plasma Cells (LLPCs) and memory T cells four months after final immunization. These findings underscore the potential of our mRNA-LNP-based vaccine candidates in generating potent immune responses against VZV, offering promising prospects for their clinical development as an effective prophylactic vaccine against herpes zoster.

3.
Sci Rep ; 13(1): 21172, 2023 12 01.
Article in English | MEDLINE | ID: mdl-38040905

ABSTRACT

Several COVID-19 vaccines, some more efficacious than others, are now available and deployed, including multiple mRNA- and viral vector-based vaccines. With the focus on creating cost-effective solutions that can reach the low- and medium- income world, GreenLight Biosciences has developed an mRNA vaccine candidate, GLB-COV2-043, encoding for the full-length SARS-CoV-2 Wuhan wild-type spike protein. In pre-clinical studies in mice, GLB-COV2-043 induced robust antigen-specific binding and virus-neutralizing antibody responses targeting homologous and heterologous SARS-CoV-2 variants and a TH1-biased immune response. Boosting mice with monovalent or bivalent mRNA-LNPs provided rapid recall and long-lasting neutralizing antibody titers, an increase in antibody avidity and breadth that was held over time and generation of antigen-specific memory B- and T- cells. In hamsters, vaccination with GLB-COV2-043 led to lower viral loads, reduced incidence of SARS-CoV-2-related microscopic findings in lungs, and protection against weight loss after heterologous challenge with Omicron BA.1 live virus. Altogether, these data indicate that GLB-COV2-043 mRNA-LNP vaccine candidate elicits robust protective humoral and cellular immune responses and establishes our mRNA-LNP platform for subsequent clinical evaluations.


Subject(s)
COVID-19 , Cricetinae , Animals , Humans , Mice , COVID-19/prevention & control , COVID-19 Vaccines , SARS-CoV-2/genetics , Models, Animal , RNA, Messenger/genetics , Antibodies, Neutralizing , Antibodies, Viral , Immunogenicity, Vaccine
4.
NPJ Vaccines ; 8(1): 117, 2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37573422

ABSTRACT

In the ongoing effort to develop a vaccine against HIV, vaccine approaches that promote strong germinal center (GC) responses may be critical to enable the selection and affinity maturation of rare B cell clones capable of evolving to produce broadly neutralizing antibodies. We previously demonstrated an approach for enhancing GC responses and overall humoral immunity elicited by alum-adjuvanted protein immunization via the use of phosphoserine (pSer) peptide-tagged immunogens that stably anchor to alum particles via ligand exchange with the alum particle surface. Here, using a clinically relevant stabilized HIV Env trimer termed MD39, we systematically evaluated the impact of several parameters relevant to pSer tag composition and trimer immunogen design to optimize this approach, including phosphate valency, amino acid sequence of the trimer C-terminus used for pSer tag conjugation, and structure of the pSer tag. We also tested the impact of co-administering a potent saponin/monophosphoryl lipid A (MPLA) nanoparticle co-adjuvant with alum-bound trimers. We identified MD39 trimer sequences bearing an optimized positively-charged C-terminal amino acid sequence, which, when conjugated to a pSer tag with four phosphates and a polypeptide spacer, bound very tightly to alum particles while retaining a native Env-like antigenicity profile. This optimized pSer-trimer design elicited robust antigen-specific GC B cell and serum IgG responses in mice. Through this optimization, we present a favorable MD39-pSer immunogen construct for clinical translation.

5.
Bioeng Transl Med ; 8(2): e10453, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36925719

ABSTRACT

Ovarian cancer is especially deadly, challenging to treat, and has proven refractory to known immunotherapies. Cytokine therapy is an attractive strategy to drive a proinflammatory immune response in immunologically cold tumors such as many high grade ovarian cancers; however, this strategy has been limited in the past due to severe toxicity. We previously demonstrated the use of a layer-by-layer (LbL) nanoparticle (NP) delivery vehicle in subcutaneous flank tumors to reduce the toxicity of interleukin-12 (IL-12) therapy upon intratumoral injection. However, ovarian cancer cannot be treated by local injection as it presents as dispersed metastases. Herein, we demonstrate the use of systemically delivered LbL NPs using a cancer cell membrane-binding outer layer to effectively target and engage the adaptive immune system as a treatment in multiple orthotopic ovarian tumor models, including immunologically cold tumors. IL-12 therapy from systemically delivered LbL NPs shows reduced severe toxicity and maintained anti-tumor efficacy compared to carrier-free IL-12 or layer-free liposomal NPs leading to a 30% complete survival rate.

6.
J Control Release ; 353: 241-253, 2023 01.
Article in English | MEDLINE | ID: mdl-36414195

ABSTRACT

The recent clinical success of multiple mRNA-based SARS-CoV-2 vaccines has proven the potential of RNA formulated in lipid nanoparticles (LNPs) in humans, and products based on base-modified RNA, sequence-optimized RNA, and self-replicating RNAs formulated in LNPs are all in various stages of clinical development. However, much remains to be learned about critical parameters governing the manufacturing and use of LNP-RNA formulations. One important issue that has received limited attention in the literature to date is the identification of optimal storage conditions for LNP-RNA that preserve long-term activity of the formulations. Here, we analyzed the physical structure, in vivo expression characteristics, and functional activity of alphavirus-derived self-replicating RNA (repRNA)-loaded LNPs encoding HIV vaccine antigens following storage in varying temperatures, buffers, and in the presence or absence of cryoprotectants. We found that for lipid nanoparticles with compositions similar to clinically-used LNPs, storage in RNAse-free PBS containing 10% (w/v) sucrose at -20 °C was able to maintain vaccine stability and in vivo potency at a level equivalent to freshly prepared vaccines following 30 days of storage. LNPs loaded with repRNA could also be lyophilized with retention of bioactivity.


Subject(s)
COVID-19 , Nanoparticles , Vaccines , Humans , COVID-19 Vaccines , SARS-CoV-2 , RNA , Nanoparticles/chemistry , RNA, Small Interfering/chemistry
7.
Adv Ther (Weinh) ; 5(7): 2100235, 2022 Jul.
Article in English | MEDLINE | ID: mdl-36311814

ABSTRACT

Protein antigens are often combined with aluminum hydroxide (alum), the most commonly used adjuvant in licensed vaccines; yet the immunogenicity of alum-adjuvanted vaccines leaves much room for improvement. Here, the authors demonstrate a strategy for codelivering an immunostimulatory cytokine, the interleukin IL-21, with an engineered outer domain (eOD) human immunodeficiency virus gp120 Env immunogen eOD, bound together to alum to bolster the humoral immune response. In this approach, the immunogen and cytokine are co-anchored to alum particles via a short phosphoserine (pSer) peptide linker, promoting stable binding to alum and sustained bioavailability following injection. pSer-modified eOD and IL-21 promote enhanced lymphatic drainage and lead to accumulation of the vaccine in B cell follicles in the draining lymph nodes. This in turn promotes enhanced T follicular helper cell priming and robust germinal center responses as well as increased antigen-specific serum IgG titers. This is a general strategy for codelivery of immunostimulatory cytokine with immunogens providing a facile approach to modulate T cell priming and GC reactions toward enhanced protective immunity using the most common clinical vaccine adjuvant.

8.
Sci Transl Med ; 14(654): eabn1413, 2022 07 20.
Article in English | MEDLINE | ID: mdl-35857825

ABSTRACT

To combat the HIV epidemic and emerging threats such as SARS-CoV-2, immunization strategies are needed that elicit protection at mucosal portals of pathogen entry. Immunization directly through airway surfaces is effective in driving mucosal immunity, but poor vaccine uptake across the mucus and epithelial lining is a limitation. The major blood protein albumin is constitutively transcytosed bidirectionally across the airway epithelium through interactions with neonatal Fc receptors (FcRn). Exploiting this biology, here, we demonstrate a strategy of "albumin hitchhiking" to promote mucosal immunity using an intranasal vaccine consisting of protein immunogens modified with an amphiphilic albumin-binding polymer-lipid tail, forming amph-proteins. Amph-proteins persisted in the nasal mucosa of mice and nonhuman primates and exhibited increased uptake into the tissue in an FcRn-dependent manner, leading to enhanced germinal center responses in nasal-associated lymphoid tissue. Intranasal immunization with amph-conjugated HIV Env gp120 or SARS-CoV-2 receptor binding domain (RBD) proteins elicited 100- to 1000-fold higher antigen-specific IgG and IgA titers in the serum, upper and lower respiratory mucosa, and distal genitourinary mucosae of mice compared to unmodified protein. Amph-RBD immunization induced high titers of SARS-CoV-2-neutralizing antibodies in serum, nasal washes, and bronchoalveolar lavage. Furthermore, intranasal amph-protein immunization in rhesus macaques elicited 10-fold higher antigen-specific IgG and IgA responses in the serum and nasal mucosa compared to unmodified protein, supporting the translational potential of this approach. These results suggest that using amph-protein vaccines to deliver antigen across mucosal epithelia is a promising strategy to promote mucosal immunity against HIV, SARS-CoV-2, and other infectious diseases.


Subject(s)
COVID-19 , HIV Infections , Administration, Intranasal , Albumins , Animals , Antibodies, Viral , COVID-19/prevention & control , HIV Infections/prevention & control , Immunity, Mucosal , Immunoglobulin A , Immunoglobulin G , Lipids , Macaca mulatta , Mice , Mice, Inbred BALB C , SARS-CoV-2 , Vaccination
9.
Nat Mater ; 21(6): 710-720, 2022 06.
Article in English | MEDLINE | ID: mdl-35606429

ABSTRACT

Activation of the innate immune STimulator of INterferon Genes (STING) pathway potentiates antitumour immunity, but systemic delivery of STING agonists to tumours is challenging. We conjugated STING-activating cyclic dinucleotides (CDNs) to PEGylated lipids (CDN-PEG-lipids; PEG, polyethylene glycol) via a cleavable linker and incorporated them into lipid nanodiscs (LNDs), which are discoid nanoparticles formed by self-assembly. Compared to state-of-the-art liposomes, intravenously administered LNDs carrying CDN-PEG-lipid (LND-CDNs) exhibited more efficient penetration of tumours, exposing the majority of tumour cells to STING agonist. A single dose of LND-CDNs induced rejection of established tumours, coincident with immune memory against tumour rechallenge. Although CDNs were not directly tumoricidal, LND-CDN uptake by cancer cells correlated with robust T-cell activation by promoting CDN and tumour antigen co-localization in dendritic cells. LNDs thus appear promising as a vehicle for robust delivery of compounds throughout solid tumours, which can be exploited for enhanced immunotherapy.


Subject(s)
Nanoparticles , Neoplasms , Humans , Immunotherapy , Lipids , Membrane Proteins/metabolism , Membrane Proteins/pharmacology , Nanoparticles/therapeutic use , Neoplasms/drug therapy
10.
Nat Biomed Eng ; 6(2): 129-143, 2022 02.
Article in English | MEDLINE | ID: mdl-35013574

ABSTRACT

Anti-tumour inflammatory cytokines are highly toxic when administered systemically. Here, in multiple syngeneic mouse models, we show that the intratumoural injection of recombinantly expressed cytokines bound tightly to the common vaccine adjuvant aluminium hydroxide (alum) (via ligand exchange between hydroxyls on the surface of alum and phosphoserine residues tagged to the cytokine by an alum-binding peptide) leads to weeks-long retention of the cytokines in the tumours, with minimal side effects. Specifically, a single dose of alum-tethered interleukin-12 induced substantial interferon-γ-mediated T-cell and natural-killer-cell activities in murine melanoma tumours, increased tumour antigen accumulation in draining lymph nodes and elicited robust tumour-specific T-cell priming. Moreover, intratumoural injection of alum-anchored cytokines enhanced responses to checkpoint blockade, promoting cures in distinct poorly immunogenic syngeneic tumour models and eliciting control over metastases and distant untreated lesions. Intratumoural treatment with alum-anchored cytokines represents a safer and tumour-agnostic strategy to improving local and systemic anticancer immunity.


Subject(s)
Alum Compounds , Cytokines , Alum Compounds/pharmacology , Animals , Immunotherapy , Interleukin-12 , Mice
11.
Sci Immunol ; 6(66): eabf1152, 2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34860581

ABSTRACT

Saponins are potent and safe vaccine adjuvants, but their mechanisms of action remain incompletely understood. Here, we explored the properties of several saponin formulations, including immune-stimulatory complexes (ISCOMs) formed by the self-assembly of saponin and phospholipids in the absence or presence of the Toll-like receptor 4 agonist monophosphoryl lipid A (MPLA). We found that MPLA self-assembles with saponins to form particles physically resembling ISCOMs, which we termed saponin/MPLA nanoparticles (SMNP). Saponin-containing adjuvants exhibited distinctive mechanisms of action, altering lymph flow in a mast cell­dependent manner and promoting antigen entry into draining lymph nodes. SMNP was particularly effective, exhibiting even greater potency than the compositionally related adjuvant AS01B in mice, and primed robust germinal center B cell, TFH, and HIV tier 2 neutralizing antibodies in nonhuman primates. Together, these findings shed new light on mechanisms by which saponin adjuvants act to promote the immune response and suggest that SMNP may be a promising adjuvant in the setting of HIV, SARS-CoV-2, and other pathogens.


Subject(s)
Adaptive Immunity/drug effects , Adjuvants, Immunologic/pharmacology , Lymph/drug effects , Saponins/pharmacology , Toll-Like Receptors/agonists , Animals , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Female , Lymph/physiology , Macaca mulatta , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Nanoparticles , Rats , Rats, Wistar
12.
Biomaterials ; 275: 120868, 2021 08.
Article in English | MEDLINE | ID: mdl-34091299

ABSTRACT

Antigen accumulation in lymph nodes (LNs) is critical for vaccine efficacy, but understanding of vaccine biodistribution in humans or large animals remains limited. Using the rhesus macaque model, we employed a combination of positron emission tomography (PET) and fluorescence imaging to characterize the whole-animal to tissue-level biodistribution of a subunit vaccine comprised of an HIV envelope trimer protein nanoparticle (trimer-NP) and lipid-conjugated CpG adjuvant (amph-CpG). Following immunization in the thigh, PET imaging revealed vaccine uptake primarily in inguinal and iliac LNs, reaching distances up to 17 cm away from the injection site. Within LNs, trimer-NPs exhibited striking accumulation on the periphery of follicular dendritic cell (FDC) networks in B cell follicles. Comparative imaging of soluble Env trimers (not presented on nanoparticles) in naïve or previously-immunized animals revealed diffuse deposition of trimer antigens in LNs following primary immunization, but concentration on FDCs in pre-immunized animals with high levels of trimer-specific IgG. These data demonstrate the capacity of nanoparticle or "albumin hitchhiking" technologies to concentrate vaccines in genitourinary tract-draining LNs, which may be valuable for promoting mucosal immunity.


Subject(s)
AIDS Vaccines , Vaccines , Adjuvants, Immunologic , Animals , Macaca mulatta , Positron-Emission Tomography , Tissue Distribution
13.
Sci Rep ; 11(1): 7074, 2021 03 29.
Article in English | MEDLINE | ID: mdl-33782422

ABSTRACT

Bovine tuberculosis (bTB) is a disease of livestock with severe and worldwide economic, animal welfare and zoonotic consequences. Application of test-and-slaughter-based control polices reliant on tuberculin skin testing has been the mainstay of bTB control in cattle. However, little is known about the temporal development of the bovine tuberculin skin test response at the dermal sites of antigen injection. To fill this knowledge gap, we applied minimally-invasive sampling microneedles (SMNs) for intradermal sampling of interstitial fluid at the tuberculin skin test sites in Mycobacterium bovis BCG-vaccinated calves and determined the temporal dynamics of a panel of 15 cytokines and chemokines in situ and in the peripheral blood. The results reveal an orchestrated and coordinated cytokine and local chemokine response, identified IL-1RA as a potential soluble biomarker of a positive tuberculin skin response, and confirmed the utility of IFN-γ and IP-10 for bTB detection in blood-based assays. Together, the results highlight the utility of SMNs to identify novel biomarkers and provide mechanistic insights on the intradermal cytokine and chemokine responses associated with the tuberculin skin test in BCG-sensitized cattle.


Subject(s)
BCG Vaccine/administration & dosage , Cytokines/biosynthesis , Needles , Tuberculin/administration & dosage , Animals , Cattle
14.
ACS Cent Sci ; 7(2): 365-378, 2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33655074

ABSTRACT

Therapeutic immunotoxins composed of antibodies and bacterial toxins provide potent activity against malignant cells, but joining them with a defined covalent bond while maintaining the desired function is challenging. Here, we develop novel immunotoxins by dovetailing full-length immunoglobulin G (IgG) antibodies and nontoxic anthrax proteins, in which the C terminus of the IgG heavy chain is connected to the side chain of anthrax toxin protective antigen. This strategy enabled efficient conjugation of protective antigen variants to trastuzumab (Tmab) and cetuximab (Cmab) antibodies. The conjugates effectively perform intracellular delivery of edema factor and N terminus of lethal factor (LFN) fused with diphtheria toxin and Ras/Rap1-specific endopeptidase. Each conjugate shows high specificity for cells expressing human epidermal growth factor receptor 2 (HER2) and epidermal growth factor receptor (EGFR), respectively, and potent activity across six Tmab- and Cmab-resistant cell lines. The conjugates also exhibit increased pharmacokinetics and pronounced in vivo safety, which shows promise for further therapeutic development.

15.
Sci Transl Med ; 12(569)2020 11 11.
Article in English | MEDLINE | ID: mdl-33177180

ABSTRACT

Adoptive cell transfer of ex vivo expanded regulatory T cells (Tregs) has shown immense potential in animal models of auto- and alloimmunity. However, the effective translation of such Treg therapies to the clinic has been slow. Because Treg homeostasis is known to require continuous T cell receptor (TCR) ligation and exogenous interleukin-2 (IL-2), some investigators have explored the use of low-dose IL-2 injections to increase endogenous Treg responses. Systemic IL-2 immunotherapy, however, can also lead to the activation of cytotoxic T lymphocytes and natural killer cells, causing adverse therapeutic outcomes. Here, we describe a drug delivery platform, which can be engineered to autostimulate Tregs with IL-2 in response to TCR-dependent activation, and thus activate these cells in sites of antigen encounter. To this end, protein nanogels (NGs) were synthesized with cleavable bis(N-hydroxysuccinimide) cross-linkers and IL-2/Fc fusion (IL-2) proteins to form particles that release IL-2 under reducing conditions, as found at the surface of T cells receiving stimulation through the TCR. Tregs surface-conjugated with IL-2 NGs were found to have preferential, allograft-protective effects relative to unmodified Tregs or Tregs stimulated with systemic IL-2. We demonstrate that murine and human NG-modified Tregs carrying an IL-2 cargo perform better than conventional Tregs in suppressing alloimmunity in murine and humanized mouse allotransplantation models. In all, the technology presented in this study has the potential to improve Treg transfer therapy by enabling the regulated spatiotemporal provision of IL-2 to antigen-primed Tregs.


Subject(s)
Interleukin-2 , T-Lymphocytes, Regulatory , Animals , Mice , Nanogels , Receptors, Antigen, T-Cell , Signal Transduction
17.
Nat Med ; 26(3): 430-440, 2020 03.
Article in English | MEDLINE | ID: mdl-32066977

ABSTRACT

Adjuvants are central to the efficacy of subunit vaccines. Aluminum hydroxide (alum) is the most commonly used vaccine adjuvant, yet its adjuvanticity is often weak and mechanisms of triggering antibody responses remain poorly understood. We demonstrate that site-specific modification of immunogens with short peptides composed of repeating phosphoserine (pSer) residues enhances binding to alum and prolongs immunogen bioavailability. The pSer-modified immunogens formulated in alum elicited greatly increased germinal center, antibody, neutralizing antibody, memory and long-lived plasma cell responses compared to conventional alum-adsorbed immunogens. Mechanistically, pSer-immunogen:alum complexes form nanoparticles that traffic to lymph nodes and trigger B cell activation through multivalent and oriented antigen display. Direct uptake of antigen-decorated alum particles by B cells upregulated antigen processing and presentation pathways, further enhancing B cell activation. These data provide insights into mechanisms of action of alum and introduce a readily translatable approach to significantly improve humoral immunity to subunit vaccines using a clinical adjuvant.


Subject(s)
Adjuvants, Immunologic/pharmacology , Aluminum Hydroxide/pharmacology , Immunity, Humoral/drug effects , Peptides/immunology , Protein Engineering , Animals , Antigen Presentation/drug effects , Antigens/metabolism , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , Endocytosis/drug effects , Epitopes/immunology , Immunization , Immunologic Memory/drug effects , Lymph Nodes/drug effects , Lymph Nodes/immunology , Lymphocyte Activation/drug effects , Mice, Inbred BALB C , Mice, Inbred C57BL , Nanoparticles/chemistry , Peptides/chemistry , Phosphoserine/metabolism
19.
Cell ; 177(5): 1153-1171.e28, 2019 05 16.
Article in English | MEDLINE | ID: mdl-31080066

ABSTRACT

Conventional immunization strategies will likely be insufficient for the development of a broadly neutralizing antibody (bnAb) vaccine for HIV or other difficult pathogens because of the immunological hurdles posed, including B cell immunodominance and germinal center (GC) quantity and quality. We found that two independent methods of slow delivery immunization of rhesus monkeys (RMs) resulted in more robust T follicular helper (TFH) cell responses and GC B cells with improved Env-binding, tracked by longitudinal fine needle aspirates. Improved GCs correlated with the development of >20-fold higher titers of autologous nAbs. Using a new RM genomic immunoglobulin locus reference, we identified differential IgV gene use between immunization modalities. Ab mapping demonstrated targeting of immunodominant non-neutralizing epitopes by conventional bolus-immunized animals, whereas slow delivery-immunized animals targeted a more diverse set of epitopes. Thus, alternative immunization strategies can enhance nAb development by altering GCs and modulating the immunodominance of non-neutralizing epitopes.


Subject(s)
Antibodies, Neutralizing/immunology , B-Lymphocytes/immunology , Germinal Center/immunology , HIV Antibodies/immunology , HIV-1/immunology , Immunization, Passive , T-Lymphocytes, Helper-Inducer/immunology , Animals , B-Lymphocytes/pathology , Female , Germinal Center/pathology , Germinal Center/virology , Macaca mulatta , Male , T-Lymphocytes, Helper-Inducer/pathology , env Gene Products, Human Immunodeficiency Virus/immunology
20.
Sci Rep ; 8(1): 16527, 2018 11 08.
Article in English | MEDLINE | ID: mdl-30410003

ABSTRACT

An HIV vaccine capable of eliciting durable neutralizing antibody responses continues to be an important unmet need. Multivalent nanoparticles displaying a high density of envelope trimers may be promising immunogen forms to elicit strong and durable humoral responses to HIV, but critical particle design criteria remain to be fully defined. To this end, we developed strategies to covalently anchor a stabilized gp140 trimer, BG505 MD39, on the surfaces of synthetic liposomes to study the effects of trimer density and vesicle stability on vaccine-elicited humoral responses in mice. CryoEM imaging revealed homogeneously distributed and oriented MD39 on the surface of liposomes irrespective of particle size, lipid composition, and conjugation strategy. Immunization with covalent MD39-coupled liposomes led to increased germinal center and antigen-specific T follicular helper cell responses and significantly higher avidity serum MD39-specific IgG responses compared to immunization with soluble MD39 trimers. A priming immunization with liposomal-MD39 was important for elicitation of high avidity antibody responses, regardless of whether booster immunizations were administered with either soluble or particulate trimers. The stability of trimer anchoring to liposomes was critical for these effects, as germinal center and output antibody responses were further increased by liposome compositions incorporating sphingomyelin that exhibited high in vitro stability in the presence of serum. Together these data highlight key liposome design features for optimizing humoral immunity to lipid nanoparticle immunogens.


Subject(s)
Antibodies, Neutralizing/blood , Germinal Center/immunology , HIV Antibodies/blood , env Gene Products, Human Immunodeficiency Virus/administration & dosage , AIDS Vaccines/administration & dosage , AIDS Vaccines/chemistry , AIDS Vaccines/immunology , Animals , Antibody Formation , Cell Line , Cryoelectron Microscopy , Drug Design , Drug Stability , Humans , Immunity, Humoral , Immunization , Liposomes , Mice , Nanoparticles , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...