Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 110
Filter
1.
J Prosthodont ; 33(4): 389-395, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37201944

ABSTRACT

PURPOSE: This study evaluated the fatigue failure load (FFL) and the number of cycles for fatigue failure (CFF) of traditional (porcelain layer up) and reversed (zirconia layer up) designs of porcelain-veneered zirconia samples prepared with heat-pressing or file-splitting techniques. MATERIALS AND METHODS: Zirconia discs were prepared and veneered with heat-pressed or machined feldspathic ceramic. The bilayer discs were bonded onto a dentin-analog according to the bilayer technique and sample design: traditional heat-pressing (T-HP), reversed heat-pressing (R-HP), traditional file-splitting with fusion ceramic (T-FC), reversed file-splitting with fusion ceramic R-FC), traditional file-splitting with resin cement (T-RC), and reversed file-splitting with resin cement (R-RC). The fatigue tests were performed using the stepwise approach at 20 Hz, 10,000 cycles/step, step-size of 200 N starting at 600 N, and proceeding until failure detection or up to 2600 N if enduring. The failure modes (from radial and/or cone cracks) were analyzed in a stereomicroscope. RESULTS: The reversed design decreased the FFL and CFF of bilayers prepared with heat-pressing and file-splitting with fusion ceramic. The T-HP and T-FC reached the highest results, which were statistically similar between them. The bilayers prepared by the file-splitting with resin cement (T-RC and R-RC) were similar to the R-FC and R-HP groups regarding FFL and CFF. Almost all reverse layering samples failed by radial cracks. CONCLUSIONS: The reverse layering design did not improve the fatigue behavior of porcelain veneered zirconia samples. The three bilayer techniques behaved similarly when used in the reversed design.


Subject(s)
Ceramics , Dental Porcelain , Ceramics/therapeutic use , Ceramics/chemistry , Dental Porcelain/chemistry , Crowns , Resin Cements , Materials Testing , Surface Properties , Dental Stress Analysis , Zirconium/chemistry , Dental Restoration Failure
2.
Dent Mater ; 40(1): 37-43, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37880068

ABSTRACT

OBJECTIVES: To evaluate the mechanical and antimicrobial properties of boron-containing coating on translucent zirconia (5Y-PSZ). METHODS: 5Y-PSZ discs (Control) were coated with a glaze (Glaze), silver- (AgCoat), or boron-containing (BCoat) glasses. The coatings' antimicrobial potential was characterized using S. mutans biofilms after 48 h via viable colony-forming units (CFU), metabolic activity (CV) assays, and quantification of extracellular polysaccharide matrix (EPS). Biofilm architectures were imaged under scanning electron and confocal laser scanning microscopies (SEM and CLSM). The cytocompatibility was determined at 24 h via WST-1 and LIVE&DEAD assays using periodontal ligament stem cells (PDLSCs). The coatings' effects on properties were characterized by Vickers hardness, biaxial bending tests, and fractography analysis. Statistical analyses were performed via one-way ANOVA, Tukey's tests, Weibull analysis, and Pearson's correlation analysis. RESULTS: BCoat significantly decreased biofilm formation, having the lowest CFU and metabolic activity compared with the other groups. BCoat and AgCoat presented the lowest EPS, followed by Glaze and Control. SEM and CLSM images revealed that the biofilms on BCoat were thin and sparse, with lower biovolume. In contrast, the other groups yielded robust biofilms with higher biovolume. The cytocompatibility was similar in all groups. BCoat, AgCoat, and Glaze also presented similar hardness and were significantly lower than Control. BCoat had the highest flexural strength, characteristic strength and Weibull parameters (σF: 625 MPa; σ0: 620 MPa; m = 11.5), followed by AgCoat (σF: 464 MPa; σ0: 478 MPa; m = 5.3). SIGNIFICANCE: BCoat is a cytocompatible coating with promising antimicrobial properties that can improve the mechanical properties and reliability of 5Y-PSZ.


Subject(s)
Anti-Infective Agents , Ceramics , Materials Testing , Boron/pharmacology , Reproducibility of Results , Zirconium/pharmacology , Surface Properties
3.
Dent Mater ; 40(3): 477-483, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38145923

ABSTRACT

OBJECTIVE: This study evaluated the effect of an experimental borosilicate glass on the mechanical and optical behavior of 5Y-PSZ zirconia and comparing it to commercial glaze and as-sintered. METHODS: Disc-shaped specimens of a 5Y-PSZ (Zpex Smile) were prepared and sintered (1550 °C, 2 h). The zirconia discs were randomly divided according to the surface treatment: as-sintered (C), commercial glaze (G), and experimental borosilicate glass (SL). Glaze and experimental glass powders were mixed with building liquids and applied to zirconia with a brush. G specimens were fired at 950 °C and SL at 1200 °C. An extended dwell time of 20 min was applied to both groups. Biaxial flexural strength, roughness (Ra and Rz), translucency (TP00), color alteration (ΔE00), Vickers hardness, fracture toughness, residual stresses, and x-ray diffraction analyses were conducted. Statistical analyses were performed with Weibull statistics, Kruskal-Wallis, or ANOVA tests (α = 5%). RESULTS: SL yielded the highest flexural strength (799.35 MPa), followed by G (662.34 MPa), and C (485.38 MPa). The fracture origin of SL specimens was in the bulk zirconia, while G and C showed fractures starting at the surface. As-sintered reached the highest fracture toughness and hardness. Glaze and borosilicate glass provided surface compressive stresses. Borosilicate glass application led to phase transformation (t→m). SL and G showed the lowest roughness. TP00 and ΔE00 were similar among groups. SIGNIFICANCE: Borosilicate glass improved strength without harming the optical properties of third-generation zirconia. Toughness and roughness provided by the experimental glass were similar to those from commercial glaze.


Subject(s)
Ceramics , Flexural Strength , Materials Testing , Surface Properties , Zirconium , Dental Materials
4.
J Adhes Dent ; 25(1): 159-166, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37551926

ABSTRACT

PURPOSE: To evaluate the bond strength between alternative or conventional luting agents and indirect restorative materials. MATERIALS AND METHODS: Blocks of a polymer-infiltrated ceramic network (PICN, Vita Enamic) and a feldspathic ceramic (FEL, Vita Mark II) were sliced and divided according to the luting agent: resin cement (PICN-RC, FEL-RC), flowable composite (PICN-FC, FEL-FC), or preheated composite (PICN-PH, FEL-PH). The ceramic surfaces were polished, etched with 5% hydrofluoric acid for 60 s, and then a silane layer was applied. Cylinders of the luting agents were built up on the ceramic surfaces. In half the samples, the microshear bond strength (µSBS) was tested after 24 h (baseline). The other half was tested after 5000 thermocycles (5°C-55°C) (aging). The failure modes were determined using a stereomicroscope, and the ceramic surfaces were analyzed using a scanning electron microscope. Data were statistically analyzed with two-way ANOVA. RESULTS: Thermocycling reduced the bond strength values of all experimental groups. Regarding FEL, the preheated composite obtained the highest results. Resin cement showed results similar to the flowable composite at baseline and after aging. The highest results of PICN were obtained from the preheated composite followed by resin cement and flowable composite. Significant differences among the three luting agents were observed before and after aging. The most frequent failures among the experimental groups were adhesive and cohesive in the ceramic. CONCLUSION: Bond strength results indicate that the preheated composite can be an alternative for adhesive cementation when applied on the tested feldspathic ceramic or PICN.


Subject(s)
Dental Bonding , Resin Cements , Resin Cements/chemistry , Surface Properties , Acid Etching, Dental/methods , Ceramics/chemistry , Dental Porcelain/chemistry , Dental Cements , Silanes/chemistry , Materials Testing , Hydrofluoric Acid/chemistry
5.
Clin Oral Investig ; 27(6): 2957-2968, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36781479

ABSTRACT

OBJECTIVES: To evaluate the effect of the remaining tooth structure and different CAD/CAM materials on the fatigue performance and failure mode of endodontically treated premolars restored with endocrowns. MATERIALS AND METHODS: Ninety maxillary premolars were endodontically treated and assigned into 6 groups (n = 15) according to the number of remaining axial walls (four, three, and two) and restorative materials (ultra-translucent zirconia 5Y-PSZ [KATANA UTML] and lithium disilicate [IPS e.max-CAD]). The specimens were subjected to cyclic fatigue loading test (initial load 200 N; 20 Hz). An incremental step load of 100 N per 10,000 cycles was applied until failure. The fatigue failure load (FFL) and number of failure cycles (CFFs) data were statistically analyzed with two-way ANOVA and Kaplan-Meier test (α = 0.05). Failed specimens were examined under a stereomicroscope 25 × and failure modes were determined. RESULTS: FFL and CFF were significantly influenced by restorative material (p < 0.05). 5Y-PSZ endocrowns showed significantly higher FFL when compared with lithium disilicate. The number of remaining walls did not affect the fatigue behavior or failure mode of the specimens. Of the lithium disilicate restorations, 51% had repairable failures, while 95% 5Y-PSZ restorations had non-repairable failures. CONCLUSIONS: Zirconia endocrowns showed better FFL than lithium disilicate endocrowns, regardless of the number of remaining axis walls. Lithium disilicate and 5Y-PSZ endocrowns showed FFL higher than the normal masticatory loads. CLINICAL RELEVANCE: Restoring endodontically treated premolars with endocrown could be a promising treatment, regardless of the remaining axial walls. However, precaution should be taken in material selection since it affects the fatigue resistance and failure mode.


Subject(s)
Ceramics , Crowns , Ceramics/chemistry , Bicuspid , Materials Testing , Dental Restoration Failure , Dental Stress Analysis , Surface Properties , Dental Porcelain/chemistry , Dental Materials , Computer-Aided Design
6.
J Adhes Dent ; 25(1): 1-12, 2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36633468

ABSTRACT

PURPOSE: To evaluate the effect of plasma-enhanced chemical vapor deposition (PECVD) with silicon hydride (SiH4) at different times on HT-zirconia surface characteristics and bonding of composite cement before and after thermocycling. MATERIALS AND METHODS: Blocks of HT zirconia were obtained, polished, sintered and divided into five groups, according to PECVD time (n = 31): Zr-30 (30 s), Zr-60 (60 s), Zr-120 (120 s) and Zr-300 (300 s). The control group (Zr-0) did not receive PECVD. X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), energy dispersive spectroscopy (EDS) in conjunction with field-emission scanning electron microscopy (FE-SEM), x-ray photoelectron spectroscopy (XPS), goniometry, and profilometry tests were used for chemical and topographic characterization. Monobond N silane (Ivoclar Vivadent) was applied to the surface, and a cylinder of composite cement (Variolink N) was made (3 x 3 mm). Half of the specimens of each group were stored for 24 h or subjected to thermocycling (6 x 103 cycles). A shear bond strength (SBS) test was performed. Results were subjected to one-way ANOVA and Tukey's tests (α = 0.05). RESULTS: For experimental groups, XPS showed that formation of Si-O bonds contributed to increased surface free energy (SFE). FE-SEM and EDS showed that the longer the deposition time, the greater the amount of silicon on the surface. Zr-60 and Zr-300 presented higher and lower surface roughnesses, respectively. The silicon penetrated the microstructure, causing higher stress concentrations. The bond strength to composite cement was improved after all PECVD deposition times. CONCLUSION: The PECVD technique with SiH4, associated with chemical treatment with primer based on silane methacrylate, is a solely chemical surface treatment capable of maintaining bonding between composite cement and HT zirconia.


Subject(s)
Dental Bonding , Silicon , Silanes , Surface Properties , Resin Cements , Dental Cements , Zirconium/chemistry , Shear Strength , Materials Testing , Ceramics/chemistry
7.
Clin Oral Investig ; 27(2): 787-796, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36576566

ABSTRACT

OBJECTIVES: Photo- and dual-polymerized resin-based luting agent was evaluated for elastic moduli effects on ultra-thin lithium disilicate (LD) glass-ceramic strengthening, structural reliability, and stress distribution. MATERIALS AND METHODS: One hundred-sixty LD discs (IPS e.max CAD, Ivoclar/Vivadent) were produced in ultra-thin thicknesses (half with 0.3 mm and the other half with 0.5 mm). The ultra-thin ceramic disks were coated with two different cement types (Variolink Veneer - V and Panavia F 2.0 - P). Two positive control groups were tested following hydrofluoric (HF) acid etching (LDt3, LDt5) and two negative control groups were tested for untreated ceramic (LD 3, LD 5). Biaxial flexural strength (BFS), characteristic strength (σ0) and Weibull modulus (m) were the response variables (n = 20) at the ceramic/resin cement interface (z = 0). Finite element analysis (FEA) was used to calculate maximum principal stress. Data were analyzed using two-way ANOVA, and Tukey's test. Scanning electron microscopy (SEM) was used to analyze the failed specimens using fractography and surface morphology. RESULTS: The BFS of LD at either thickness was not affected by cement types, as also demonstrated by FEA. Structural reliability significantly improved in the positive control group (LDt5). CONCLUSION: The cementation of ultra-thin LD with a resin-cement of varying elastic moduli did not influence BFS. LD surface modification by HF acid-etching increased the reliability. CLINICAL RELEVANCE: Ultra-thin anterior veneer designs made from lithium disilicate have been widely proposed and the apparent success of LD ultra-thin veneers was not influenced by the cement choice in the current studies albeit the elastic moduli luting agents used were of similar values.


Subject(s)
Dental Bonding , Resin Cements , Resin Cements/chemistry , Flexural Strength , Elastic Modulus , Reproducibility of Results , Materials Testing , Surface Properties , Dental Porcelain/chemistry , Ceramics/chemistry , Dental Cements , Hydrofluoric Acid/chemistry
8.
Eur J Dent ; 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36535658

ABSTRACT

OBJECTIVES: This in vitro study was performed to evaluate fatigue survival by shear test in the union of leucite-reinforced feldspathic ceramic using different cement thicknesses. MATERIALS AND METHODS: Leucite-reinforced glass ceramics blocks were sectioned in 2-mm thick slices where resin cylinders were cemented. The samples were distributed in two experimental groups (n = 20) according to the cement thickness (60 and 300 µm). The specimens of each group were submitted to the stepwise fatigue test in the mechanical cycling machine under shear stress state, with a frequency of 2 Hz, a step-size of 0.16 bar, starting with a load of 31 N (1.0 bar) and a lifetime of 20,000 cycles at each load step. RESULTS: The samples were analyzed in a stereomicroscope and scanning electron microscopy to determine the failure type. There is no significant difference between the mean values of shear bond strength according to both groups. Log-rank (p = 0.925) and Wilcoxon (p = 0.520) tests revealed a similar survival probability in both cement layer thicknesses according to the confidence interval (95%). The fracture analysis showed that the mixed failure was the most common failure type in the 300-µm thickness group (80%), while adhesive failure was predominant in the 60-µm thickness group (67%). The different cement thicknesses did not influence the leucite ceramic bonding in fatigue shear testing; however, the thicker cement layer increased the predominance of the ceramic material failure. CONCLUSION: The resin cement thicknesses bonded to leucite ceramic did not influence the long-term interfacial shear bond strength, although thicker cement layer increased the ceramic material cohesive failure. Regardless the cement layer thickness, the shear bond strength lifetime decreases under fatigue.

9.
Dent Mater ; 38(12): 2084-2095, 2022 12.
Article in English | MEDLINE | ID: mdl-36446649

ABSTRACT

OBJECTIVE: To assess potential antagonist wear and survival probability of silica-infiltrated zirconia compared to glass-graded, glazed, and polished zirconia. METHODS: Table top restorations made of 3Y-TZP (3Y), 5Y-PSZ (5Y), and lithium disilicate (LD) were bonded onto epoxy resin preparations. Each zirconia was divided into five groups according to the surface treatment: polishing; glaze; polishing-glaze; glass infiltration; and silica infiltration. The LD restorations received a glaze layer. Specimens were subjected to sliding fatigue wear using a steatite antagonist (1.25 ×106 cycles, 200 N). The presence of cracks, fractures, and/or debonding was checked every one/third of the total number of cycles was completed. Roughness, microstructural, Scanning electron microscopy, wear and residual stress analyses were conducted. Kaplan-Meier, Mantel-Cox (log-rank) and ANOVA tests were performed for statistical analyses. RESULTS: The survival probability was different among the groups. Silica infiltration and polishing-glaze led to lower volume loss than glaze and glass-infiltration. Difference was observed for roughness among the zirconia and surface treatment, while lithium disilicate presented similar roughness compared to both glazed zirconia. Scanning electron microscopy revealed the removal of the surface treatment after sliding fatigue wear in all groups. Compressive stress was detected on 3Y surfaces, while tensile stress was observed on 5Y. SIGNIFICANCE: 3Y and 5Y zirconia behaved similarly regarding antagonist wear, presenting higher antagonist wear than the glass ceramic. Silica-infiltrated and polished-glazed zirconia produced lower antagonist volume loss than glazed and glass-infiltrated zirconia. Silica-infiltrated 3Y and lithium disilicate restorations were the only groups to show survival probabilities lower than 85%.


Subject(s)
Glass , Silicon Dioxide , Microscopy, Electron, Scanning , Epoxy Resins
10.
Vaccines (Basel) ; 10(10)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36298480

ABSTRACT

PURPOSE: This study sought to investigate the acceptance rate and associated factors of COVID-19 vaccines among dentists and dental students in seven countries. MATERIAL AND METHODS: A structured questionnaire prepared and guided by the report of the SAGE Working Group on Vaccine Hesitancy was distributed among groups of dentists and dental students in seven countries across four continents. RESULTS: A total of 1527 subjects (850 dentists and 677 dental students) participated in this survey. Although 72.5% of the respondents reported their intention to accept COVID-19 vaccines (dentists: 74.4%, dental students: 70.2%), there was a significant difference in agreement between dentists/dental students across countries; generally, respondents in upper-middle-, and high-income countries (UM-HICs) showed significantly higher acceptance rates compared to those in low- and lower-middle income countries (L-LMICs). Potential predictors of higher vaccine acceptance included being a dentist, being free of comorbidity, being well-informed about COVID-19 vaccines, having better knowledge about COVID-19 complications, having anxiety about COVID-19 infection, having no concerns about the side effects of the produced vaccines and being a resident of an UM-HIC. CONCLUSION: The results of our survey indicate a relatively good acceptance rate of COVID-19 among the surveyed dentists and dental students. However, dentists and dental students in L-LMICs showed significantly lower vaccine acceptance rates and trust in COVID-19 vaccines compared to their counterparts in UM-HICs. Our results provide important information to policymakers, highlighting the need for implementation of country-specific vaccine promotion strategies, with special focus on L-LMICs.

11.
Int J Prosthodont ; 35(4): 469-479, 2022.
Article in English | MEDLINE | ID: mdl-36125871

ABSTRACT

PURPOSE: To evaluate the biaxial flexural strength of different porcelain-to-zirconia thickness ratios and bonding strategies of a stress-free bilayer CAD/CAM ceramic system. MATERIALS AND METHODS: A total of 60 zirconia discs (diameter: 15 mm; thickness: 0.3 or 0.5 mm; n = 30 for each thickness) were divided into six groups (n = 10 each) according to porcelain-to-zirconia ratio and bonding strategy: VM/Zr (control): zirconia discs veneered with a feldspathic ceramic (VM 9, Vita) in 0.9-mm and 0.7-mm thicknesses using a conventional hand-layering technique; VB/Zr-SBU: zirconia discs airborne particle-abraded with 50-µm Al2O3 particles followed by an MDP primer application (Single Bond Universal, 3M) and bonded to the porcelain with a resin cement (Panavia F 2.0, Kuraray); and VB/Zr-RC: zirconia discs airborne particle-abraded with 30-µm silica-coated Al2O3 particles and silanized and bonded to the porcelain with the same resin cement. Before cementation, the VB (Vitablocs II) discs were etched with 5% hydrofluoric acid (60 seconds), followed by silane application. The bilayers (thickness = 1.2 mm) were loaded with 750 g while light curing the resin cement. Two porcelain-to-zirconia thickness ratios were evaluated: 0.9: 0.3 mm and 0.7: 0.5 mm. All groups were subjected to 106 mechanical cycles, followed by a biaxial flexural test. Data (MPa) were subjected to two-way analysis of variance (ANOVA), Tukey test (5%), and Weibull analyses. RESULTS: Two-way ANOVA revealed that the factor porcelain-to-zirconia ratio (P = .0556) was not significant; however, the bonding strategy factor was statistically significant. Among the 0.5-mm zirconia groups, the VB/Zr-SBU group presented higher flexural strength (s) than the VM/Zr or VB/Zr-RC groups. Similar results were also found for the 0.3-mm zirconia groups, in which the VB/Zr-SBU group also presented higher strength than the others, which were similar in comparison (Tukey). The Weibull modulus was similar among the groups; however, the characteristic strength was significantly different (P = .000). CONCLUSION: The zirconia bonding strategy with 50-µm Al2O3 airborne-particle abrasion, followed by a primer application, increases the flexural strength of a stress-free bilayer CAD/CAM ceramic system.


Subject(s)
Dental Porcelain , Resin Cements , Ceramics/chemistry , Dental Porcelain/chemistry , Dental Stress Analysis , Flexural Strength , Hydrofluoric Acid , Materials Testing , Silanes , Silicon Dioxide/chemistry , Zirconium
12.
J Adhes Dent ; 24(1): 279-289, 2022 Aug 18.
Article in English | MEDLINE | ID: mdl-35980237

ABSTRACT

PURPOSE: To evaluate the effect of two surface conditioning methods, namely conventional hydrofluoric acid vs self-etching primer, and the application of adhesive on the bond strength of resin cement to CAD/CAM glass-ceramics. MATERIALS AND METHODS: Blocks (N = 96) (12 x 10 x 2.5 mm) were manufactured, 24 for each tested ceramic type: lithium silicate ceramic (LS), polymer-infiltrated ceramic (PIC), leucite-reinforced feldspathic ceramic (FD), and lithium-disilicate glass-ceramic (LD). For bond strength testing, 64 blocks were randomly divided into 16 groups (4 blocks per group) according to the following factors: ceramic: 4 levels; etching: 2 levels (HFS: hydrofluoric acid + silane or Monobond Etch & Prime [MEP]); and adhesive application: 2 levels, with (signified as A) and without. Then for each group, 15 resin cement cylinders (AllCem Dual, FGM) were built up. All specimens were subjected to thermocycling (10,000 cycles) and to shear bonding strength testing (SBS) (100 kgf, 0.5 mm/min). Mean shear stresses (MPa) were statistically analyzed by three-way ANOVA, Tukey's test, and Weibull analysis. RESULTS: The mean bond strength of group PIC-HFS-A (28.45 ± 7.6 MPa) was significantly higher than that of groups LS-HFS-A (12.11 ± 2.7MPa) and FDHFSA (20.86 ± 2.0MPa). Group PIC-HFS bond strength (25.02 ± 6.5 MPa) was significantly higher only when compared to group LS-HFS (15.82 ± 4.4 MPa). The LS group presented lower SBS compared to all other groups. No significant differences were found between HFS and MEP surface treatments. CONCLUSION: Surface treatment with MEP promotes adhesion similar to that of HFS. Additional application of adhesive after the surface treatments did not improve the bond strength.


Subject(s)
Dental Bonding , Resin Cements , Ceramics/chemistry , Dental Cements , Dental Porcelain/chemistry , Hydrofluoric Acid/chemistry , Lithium , Materials Testing , Silanes , Surface Properties
13.
Dent Mater ; 38(6): 1060-1071, 2022 06.
Article in English | MEDLINE | ID: mdl-35527035

ABSTRACT

OBJECTIVES: This study aimed to evaluate the impact of mechanical fatigue cycling using the step-stress approach along with hydrothermaldegradation (134 ºC with a constant pressure of 2 bars for 20 h), and a novel intercalated hydrothermal/fatigue aging protocol on different aspects of the aging resistance of three generations of dental zirconias. METHODS: "Y"Z T (VITA), INCORIS "T"ZI (Dentsply Sirona) and "K"ATANA UTML (Noritake Kuraray) - 1st, 2nd and 3rd generation, respectively-, zirconia disks (N = 153), were divided into 6 groups (n = 3) for monotonic testing and 9 groups (n = 15) for mechanical fatigue testing, according to 3 proposed treatments for each zirconia: CF (control - only mechanical fatigue cycling); AF (aging in hydrothermal reactor at 134 °C for 20 h + mechanical fatigue cycling); AFA (Alternating protocol: 4 steps of 5 h of hydrothermal aging intercalated with mechanical fatigue cycling). Mechanical fatigue aging was performed according to the step-stress approach through biaxial flexural setup (piston-on-3-balls, initial strength: 100 MPa, step: 50 MPa/10,000, frequency: 20 Hz) until failure. Data were analyzed using Kaplan-Meier and Mantel-Cox test (α = 0.05), in addition to Weibull analysis. Fractured disks were analyzed in stereomicroscope, Scanning Electron Microscopy and X-Ray Diffraction. RESULTS: Continuous hydrothermal and mechanical fatigue cycling decreased the fatigue strength of YAF group (516 ± 38 MPa), while the alternating protocol increased it (730 ± 58 MPa). KATANA UTML showed no differences for both treatments and did not undergo t-m phase transformation. The TAF group showed the highest fatigue strength (810 ± 76 MPa) and cycles for failure (147,000.00 cycles). The fracture origin for all specimens was on the tensile side in pre-existing defects. SIGNIFICANCE: INCORIS TZI zirconia had higher fatigue strength and survival rates after hydrothermal and mechanical fatigue aging. Although less resistant, KATANA UTML did not suffer chemical degradation.


Subject(s)
Dental Materials , Yttrium , Ceramics , Materials Testing , Stress, Mechanical , Surface Properties , Zirconium
14.
Clin Oral Investig ; 26(6): 4479-4486, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35435492

ABSTRACT

OBJECTIVE: The aim of this study was to evaluate the effect of four different finishing procedures on the fatigue strength of a fully stabilized zirconia (5Y-FSZ) material. MATERIALS AND METHODS: Disc-shaped specimens of a 5Y-FSZ (Katana UTML, Kuraray Noritake) were made (ISO 6872-2015), grinded with 600- and 1200-grit silicon carbide paper, sintered as recommended, and randomly assigned into four groups according to the finishing technique: C (control, as-sintered), P (polished with polishing rubbers), G (glaze application - powder/liquid technique), and PG (polished with polishing rubbers + glaze application - powder/liquid). Then fatigue strength (staircase method), X-ray diffraction (XRD), and scanning electron microscopy (SEM) analyses were performed. RESULTS: The C group presented the lowest fatigue strength, while the PG group presented the highest. The P and G groups presented intermediate behavior, presenting similar statistical results. XRD showed similar crystalline phase patterns for all groups. SEM images revealed some changes in the zirconia surface, with the P group presenting some scratches on the surface, while the scratches in the PG group were filled with the glaze material. CONCLUSION: None of the techniques analyzed in this study impaired the fatigue strength of fully stabilized zirconia. Importantly, the polishing rubbers combined with glaze application (PG group) improved its fatigue strength. CLINICAL RELEVANCE: The polishing rubbers followed by glaze application improve the fatigue strength in ultra-translucent zirconia.


Subject(s)
Materials Testing , Zirconium , Ceramics/chemistry , Dental Polishing , Humans , Microscopy, Electron, Scanning , Powders , Surface Properties , Zirconium/chemistry
15.
J Adhes Dent ; 24(1): 147-154, 2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35416442

ABSTRACT

PURPOSE: To determine the interfacial fracture energy (IFE) and stress distribution of Brazil-nut-shaped specimens made of translucent zirconia and resin cement. MATERIALS AND METHODS: Three types of translucent zirconia were used: 3Y-TZP (high, Vita YZ HT), 4Y-TZP (super, Vita YZ ST), and 5Y-TZP (extra, Vita YZ XT). The adhesive surfaces were air abraded and 10-MDP-based resin cement was used. The cemented Brazil-nut-shaped specimens, with an elliptical defect in the center (as in real Brazil nuts), were thermally aged (5°C-55°C; 40,000 cycles). The IFE test was conducted with a piston to apply compression on the specimen, while the adhesive interface was positioned at four different angles (0, 10, 20, and 30 degrees) to measure the IFE during tensile, shear, and mixed failure modes. All adhesive interfaces were observed to determine failure patterns. The finite element analysis (FEA) was used to calculate tensile and shear stress distributions according to inclinations. Statistical analysis was conducted using the Kruskal-Wallis and Dunn's post-hoc tests (95%), as well as the Mann-Whitney test (95%) was applied to compare each group regarding the aging factor. RESULTS: According to Kruskal-Wallis and Dunn's post-hoc tests, there were no statistically significant differences between non-aged (p > 0.05) and aged materials (p > 0.05). However, there was a significant difference between aged and non-aged materials for all inclinations (p < 0.05) (Mann-Whitney test). According to the FEA, the compressive loading of Brazil-nut-shaped specimens at different angles showed a predominance of tensile stress at 0 degrees and shear stress at 30 degrees. CONCLUSION: The IFE under predominantly shear stresses is higher than when specimens are subjected only to tensile stresses, which allows the interpretation that failures in the oral environmental will probably occur preferentially under tensile stresses, because less energy is needed. All translucent zirconia bonded to resin cement has similar IFE, and thermal aging negatively affects these bonding interfaces.


Subject(s)
Dental Bonding , Resin Cements , Dental Stress Analysis , Materials Testing , Surface Properties , Zirconium
16.
Clin Oral Investig ; 26(1): 889-900, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34448074

ABSTRACT

OBJECTIVE: To investigate the influence of different finishing/polishing techniques and in situ aging on the flexural strength (σ), surface roughness, and Candida albicans adherence of 5 mol% yttria-stabilized zirconia (ultratranslucent zirconia). MATERIALS AND METHODS: A total of 120 zirconia bars (Prettau Anterior, Zirkonzahn) with dimensions of 8 × 2 × 0.5 mm were divided into 8 groups (n = 15) according to two factors: "in situ aging" (non-aged and aged (A)) and "finishing/polishing" (control (C), diamond rubber polishing (R), coarse grit diamond bur abrasion (B), and coarse grit diamond bur abrasion + diamond rubber polishing (BR)). Half of the samples from each group were subjected to a 60-day in situ aging by fixing the bars into cavities prepared in the posterior region of the base of complete or partial dentures of 15 patients. The samples were then subjected to the mini flexural (σ) test (1 mm/min). A total of 40 zirconia blocks (5 × 5 × 2 mm) were prepared and subjected to roughness (Ra) analyses and fungal adherence and complementary analyses (X-ray diffraction (XRD) and scanning electron microscopy (SEM)). The data of mean σ (MPa) and roughness Ra (µm) were statistically analyzed by two-way and one-way ANOVA, respectively, and Tukey's test. The Weibull analysis was performed for σ data. The fungal adhesion (Log CFU/mL) data were analyzed by Kruskal-Wallis tests. RESULTS: For flexural resistance, the "finishing/polishing" factor was statistically significant (P = 0.0001); however, the "in situ aging" factor (P = 0.4458) was not significant. The non-aged (507.3 ± 115.7 MPa) and aged (487.6 ± 118.4 MPa) rubber polishing groups exhibited higher mean σ than the other techniques. The non-aged (260.2 ± 43.3 MPa) and aged (270.1 ± 48.8 MPa) bur abrasion groups presented lower σ. The coarse-grit diamond bur abrasion group (1.82 ± 0.61 µm) presented the highest roughness value (P = 0.001). Cell adhesion was not different among groups (P = 0.053). Group B presented the most irregular surface and the highest roughness Ra of 0.61 m. CONCLUSIONS: The finishing of ultratranslucent zirconia might be preferably done with a diamond rubber polisher. Moreover, the protocols used did not interfere with Candida albicans adhesion. CLINICAL RELEVANCE: Coarse-grit diamond burs might be avoided for finishing ultratranslucent monolithic zirconia, which might be preferably performed with a diamond rubber polisher.


Subject(s)
Candida albicans , Flexural Strength , Ceramics , Dental Polishing , Humans , Materials Testing , Microscopy, Electron, Scanning , Surface Properties , Zirconium
17.
J Clin Exp Dent ; 13(11): e1089-e1095, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34824694

ABSTRACT

BACKGROUND: The objective of this in vitro study was to evaluate the effect of the active application of self-etching ceramic primer (ME&P) on the bond strength of different dental CAD/CAM materials (Lithium Disilicate ceramic (LD), Leucite ceramic (LE), Zirconia reinforced lithium silicate ceramic (ZLS), and Hybrid ceramic (HC)) with thermocycling aging. MATERIAL AND METHODS: The samples were randomly divided into 16 groups (n = 20). Dual resin cement cylinders were made and light cured for 10 s (1.200 mW/cm2) for the shear bond strength test. 3-way ANOVA revealed that the factors were statistically significant (P< 0.05). RESULTS: The aging process had a negative impact on the bond strength for all groups except for Lithium Disilicate, with active application. ZLS and LE showed promising results with high bond strength values for the ME&P active application; however, after aging the bond strength value was significantly reduced. HC showed reduced bond strength values regardless the ME&P application. CONCLUSIONS: In order to obtain a durable bond strength, the recommended protocol of 20 s of active application followed by 40 s of sitting time in the self-etching ceramic primer should be followed when using reinforced-glass ceramics as restorative materials. Key words:Dentistry, dental materials, silane, shear strength, computer-aided design.

18.
Braz Dent J ; 32(2): 53-63, 2021.
Article in English | MEDLINE | ID: mdl-34614061

ABSTRACT

The present study was a prospective, controlled, randomized, clinical short-term trial aiming to evaluate the clinical performance of adhesively luted, lithium disilicate and feldspathic glass-ceramics onlays over a period up to 2 years. A total of 11 patients (7 female, 4 male; age range: 18-60 years, mean age: 39 years) were selected for this study. Each patient received a maximum of two restorations per group in a split-mouth-design. LD: Eleven onlays, performed with lithium disilicate-based ceramic (IPS e.max CAD, Ivoclar Vivadent, Schaan, Liechtenstein), and FP: Eleven onlays, performed with feldspathic ceramic (Vita Mark II, Vita Zanhfabrik, Bad Säckingen). Recalls were performed at 2 weeks (baseline = R1), 1 year (R2) and 2 years (R3) after the cementation by three calibrated blinded independent investigators using mirrors, magnifying eyeglasses, probes and bitewing radiographs. The postoperative sensitivity, secondary caries, marginal integrity, marginal discoloration, color match, surface roughness, tooth integrity, and restoration integrity were evaluated. The Friedman test was used to determine if there was a statistically significant difference in time-to-time comparison of the parameters in the ceramics restorations. A total of 95.4% of the restorations were clinically acceptable at the 2-year recall, without a difference for any evaluation parameter for both ceramic materials. Based on the 2-year data, the CAD-CAM onlays manufactured with feldspathic and lithium-disilicate based ceramics showed similar clinical performance.


Subject(s)
Inlays , Mouth , Adolescent , Adult , Dental Porcelain , Female , Humans , Male , Middle Aged , Prospective Studies , Young Adult
19.
Materials (Basel) ; 14(15)2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34361443

ABSTRACT

The loss of dental structure caused by endodontic treatment is responsible for a decrease in tooth resistance, which increases susceptibility to fracture. Therefore, it is important that minimally invasive treatments be performed to preserve the dental structure and increase the resistance to fracture of endodontically treated posterior teeth. To evaluate under axial loads, using the finite element method, the stress distribution in endodontically treated molars restored with both transfixed or vertical glass fiber posts (GFP) and resin composite. An endodontically treated molar 3D-model was analyzed using finite element analyses under four different conditions, class II resin composite (G1, control model), vertical glass fiber post (G2), transfixed glass fiber posts (G3) and vertical and transfixed glass fiber posts (G4). Ideal contacts were considered between restoration/resin composite and resin composite/tooth. An axial load (300 N) was applied to the occlusal surface. The resulting tensile stresses were calculated for the enamel and dentin tissue from five different viewports (occlusal, buccal, palatal, mesial and distal views). According to the stress maps, similar stress trends were observed, regardless of the glass fiber post treatment. In addition, for the G1 model (without GFP), a high-stress magnitude can be noticed in the proximal faces of enamel (7.7 to 14 MPa) and dentin (2.1 to 3.3 MPa) tissue. The use of transfixed glass fiber post is not indicated to reduce the stresses, under axial loads, in both enamel and dentin tissue in endodontically treated molar with a class II cavity.

20.
J Mech Behav Biomed Mater ; 121: 104604, 2021 09.
Article in English | MEDLINE | ID: mdl-34087550

ABSTRACT

The aim of this study was to evaluate the effect of in-lab simulation procedures performed on a lithium disilicate ceramic luted to a dentin-analogue material regarding the fatigue performance and topographic changes. Lithium disilicate ceramic (IPS e.max CAD) discs (Ø = 13.5 mm and 1.5 mm of thickness) were produced in different ways: milled in a CAD/CAM system (CAD/CAM - control group); mirror-polished (POL group); produced in-lab and ground with #60 silicon carbide paper (SiC group); with #60 wood sandpaper (WS group); with a fine diamond bur (DB group); or with a CAD/CAM bur adapted in a handpiece with a custom mandrel (MANDREL group). The ceramic discs were adhesively luted (Multilink N) onto dentin analogue discs (Ø = 12 mm and 2 mm of thickness) and fatigue testing (n = 19 discs) was performed by step-stress methodology (initial load of 200 N; step-size of 50 N; 10,000 cycles per step; 20 Hz). Surface roughness and contact angle analysis were also performed. According to Kaplan-Meier and post-hoc Mantel-Cox (log-rank), distinct fabrication methods affected the fatigue performance of bonded glass-ceramic discs (p< 0.001). The CAD/CAM group presented the lowest fatigue failure loads (1250 N) and number of cycles for failure (185,000), while the POL groups obtained the highest results (1752 N; 284,444 cycles). The in-lab groups had intermediate values (1355 - 1526 N; 206,052 - 238,684 cycles). Polished specimens presented the lowest roughness values (Ra = 0.041 µm), while the SiC (1.604 µm), WS (1.701 µm), and MANDREL (1.867 µm) groups showed statistically similar roughness values to the CAD/CAM group (1.738 µm). Despite differences before etching, the contact angle was similar among the milled and simulated groups after etching, except for the polished group. Even with some topographic similarities, the tested in-lab simulation methods were not able to mimic the milled specimens in terms of fatigue findings, leading to distinct magnitude of overestimations of the results.


Subject(s)
Ceramics , Computer-Aided Design , Dental Porcelain , Dental Stress Analysis , Materials Testing , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...