Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
Biochem Biophys Res Commun ; 706: 149748, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38460450

ABSTRACT

Angiogenesis is a process that is controlled by a delicate combination of proangiogenic and antiangiogenic molecules and can be disrupted in various illnesses, including cancer. Non-cancerous diseases can also have an abnormal or insufficient vascular growth, inflammation and hypoxia, which exacerbate angiogenesis. These conditions include atherosclerosis, psoriasis, endometriosis, asthma, obesity and AIDS. Based on that, the present work assessed the in vitro and ex vivo antiangiogenic properties stemming from BthMP, a P-I metalloproteinase from Bothrops moojeni snake venom, via the VEGF pathway. BthMP at a concentration of 5 and 40 µg/mL showed no toxicity to endothelial cells (HUVEC) in the MTT assay and was not able to induce necrosis and colony proliferation. Interestingly, BthMP inhibited adhesion, migration and invasion of HUVECs in Matrigel and arrested in vitro angiogenesis by reducing the average number of nodules in toxin-treated cells by 9.6 and 17.32 at 5 and 40 µg/mL, respectively, and the number of tubules by 15.9 at 5 µg/mL and 21.6 at 40 µg/mL in a VEGF-dependent way, an essential proangiogenic property. Furthermore, BthMP inhibited the occurrence of the angiogenic process in an ex vivo aortic ring test by decreasing new vessel formation by 52% at 5 µg/mL and by 66% at 40 µg/mL and by increasing the expression of an antiangiogenic gene, SFLT-1, and decreasing the expression of the proangiogenic genes VEGFA and ANGPT-1. Finally, this toxin reduces the production of nitric oxide, a marker that promotes angiogenesis and VEGF modulation, and decreases the protein expression of VEGFA in the supernatant of the HUVEC culture by about 30 %. These results suggest that BthMP has a promising antiangiogenic property and proves to be a biotechnological mechanism for understanding the antiangiogenic responses induced by snake venom metalloproteinases, which could be applied to a variety of diseases that exhibit an imbalance of angiogenesis mechanisms.


Subject(s)
Bothrops , Endothelial Cells , Venomous Snakes , Animals , Female , Humans , Endothelial Cells/metabolism , Vascular Endothelial Growth Factor A/metabolism , Bothrops/metabolism , Metalloproteases/metabolism , Snake Venoms , Human Umbilical Vein Endothelial Cells/metabolism , Angiogenesis Inhibitors/pharmacology
2.
Biochimie ; 200: 68-78, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35613667

ABSTRACT

Vascular endothelial growth factors (VEGFs) are crucial molecules involved in the modulation of angiogenesis. Snake venom-derived VEGFs (svVEGFs) are known to contribute significantly to the envenoming due to their capacity of increasing vascular permeability. In our work, we isolated and analyzed the biochemical and functional properties of the VEGF from Crotalus durissus collilineatus venom (CdcVEGF). The venom was fractionated by reversed phase chromatography on FPLC system (Fast Protein Liquid Chromatography) and the eluted fractions were submitted to an ELISA assay using an anti-VEGF-F antibody, for identification of svVEGF. Positive fractions for svVEGF were submitted to SDS-PAGE and to an anion exchange chromatography to isolate the molecule. The subfractions were analyzed by ELISA and SDS-PAGE and six of them presented svVEGFs, named CdcVEGF1 (Q23-3), CdcVEGF2 (Q24-3), CdcVEGF3 (Q24-4), CdcVEGF4 (Q25-3), CdcVEGF5 (Q25-4), and CdcVEGF6 (Q25-5). Their structural characterization was accomplished by mass spectrometry analysis using MALDI-TOF to determine their molecular masses and UPLC-ESI-QTOF to determine their amino acid sequence. Interestingly, all isolated CdcVEGFs induced angiogenesis on HUVEC cells through tube formation on Matrigel when compared to culture medium (negative control). Moreover, CdcVEGF2 and CdcVEGF3 also induced a significant increase in tube formation when compared to the positive control (basic fibroblast growth factor - bFGF). Additionally, crotalid antivenom produced by the Instituto Butantan was able to recognize CdcVEGFs, demonstrating to be immunogenic. This study demonstrates that snake venom cocktail can reveal novel and important molecules, which are potential molecular tools to study diverse biological processes, such as angiogenesis.


Subject(s)
Crotalid Venoms , Crotalus , Animals , Crotalid Venoms/chemistry , Snake Venoms , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factors
3.
Int J Biol Macromol ; 182: 1602-1610, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34033823

ABSTRACT

Phospholipase A2 Bothropstoxin-I (PLA2 BthTX-I) is a myotoxic Lys49-PLA2 from Bothrops jararacussu snake venom. In order to evaluate the DNA damage caused by BthTX-I, we used the Somatic Mutation and Recombination Test (SMART) in Drosophila melanogaster and Comet assay in HUVEC and DU-145 cells. For SMART, different concentrations of BthTX-I (6.72 to 430 µg/mL) were used and no significant changes in the survival rate were observed. Significant frequency of mutant spots was observed for the ST cross at the highest concentration of BthTX-I due to recombinogenic activity. In the HB cross, BthTX-I increased the number of mutant spots at intermediate concentrations, being 53.75 µg/mL highly mutagenic and 107.5 µg/mL predominantly recombinogenic. The highest concentrations were neither mutagenic nor recombinogenic, which could indicate cytotoxicity in the wing cells of D. melanogaster. In vitro, all BthTX-I concentrations (1 to 50 µg/mL) induced decrease in HUVEC cell viability, as well as in DU-145 cells at concentrations of 10, 25, and 50 µg/mL. The comet assay showed that in HUVEC and DU-145 cells, all BthTX-I concentrations promoted increase of DNA damage. Further studies should be performed to elucidate the mechanism of action of PLA2 BthTX-I and its possible use in therapeutic strategies against cancer.


Subject(s)
Bothrops/metabolism , Crotalid Venoms/toxicity , Phospholipases A2/metabolism , Animals , Cell Line , Cell Survival/drug effects , Comet Assay , Drosophila melanogaster , Human Umbilical Vein Endothelial Cells , Humans , Mutation/genetics
4.
Int J Biol Macromol ; 167: 267-278, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33242552

ABSTRACT

This study aims to examine whether two L-amino acid oxidases isolated from Bothrops snake venom (SV-LAAOs) were cytotoxic to Leishmania (Leishmania) amazonensis and Leishmania (Viannia) braziliensis, two causative agents of leishmaniasis, which is an endemic disease in tropical and subtropical countries. The SV-LAAOs BjussuLAAO-II and BmooLAAO-II were isolated from Bothrops jararacussu and Bothrops moojeni venom, respectively, through a three-step chromatography process that used molecular exclusion, hydrophobic interaction, and affinity columns. BmooLAAO-II is a new SV-LAAO isoform that we isolated in this study. The purified BjussuLAAO-II and BmooLAAO-II had high L-amino acid oxidase-specific activity: 3481.17 and 4924.77 U/mg/min, respectively. Both SV-LAAOs were strongly cytotoxic to the two Leishmania species, even at low concentrations. At the same concentration, BjussuLAAO-II and BmooLAAO-II exerted different cytotoxic effects on the parasites. We reported for the first time that the SV-LAAOs suppressed cell proliferation and altered the mitochondrial membrane potential of the two Leishmania species. Surprisingly, BjussuLAAO-II increased the intracellular reactive oxygen species production only in L. (L.) amazonensis, while BmooLAAO-II increased the intracellular reactive oxygen species production only in L. (V.) braziliensis, indicating that these SV-LAAOs had a certain specificity of action.


Subject(s)
Antiprotozoal Agents/isolation & purification , Antiprotozoal Agents/pharmacology , Bothrops , Crotalid Venoms/enzymology , L-Amino Acid Oxidase/isolation & purification , L-Amino Acid Oxidase/pharmacology , Leishmania/drug effects , Amino Acid Sequence , Animals , Brazil , Chromatography , Enzyme Activation , L-Amino Acid Oxidase/chemistry , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondria/genetics , Mitochondria/metabolism , Parasitic Sensitivity Tests , Reactive Oxygen Species/metabolism
5.
Curr Top Med Chem ; 19(22): 2069-2078, 2019.
Article in English | MEDLINE | ID: mdl-31385773

ABSTRACT

BACKGROUND: Disintegrins from snake venoms bind with high specificity cell surface integrins, which are important pharmacological targets associated with cancer development and progression. OBJECTIVE: In this study, we isolated a disintegrin from the Porthidium lansbergii lansbergii venom and evaluated its antitumoral effects on breast cancer cells. METHODS: The isolation of the disintegrin was performed on RP-HPLC and the inhibition of platelet aggregation was evaluated on human platelet-rich plasma. The inhibition of cell adhesion was also evaluated in vitro on cultures of cell lines by the MTT method as well as the inhibition of breast cancer cell migration by the wound healing assay. The binding of the disintegrin to integrin subunits was verified by flow cytometry and confocal microscopy. Finally, inhibition of angiogenesis was assessed in vitro on HUVEC cells and the concentration of VEGF was measured in the cellular supernatants. RESULTS: The disintegrin, named Lansbermin-I, is a low molecular weight protein (< 10 kDa) that includes an RGD on its sequence identified previously. Lansbermin-I showed potent inhibition of ADP and collagen-induced platelet aggregation on human plasma and also displayed inhibitory effects on the adhesion and migration of breast cancer MCF7 and MDA-MB 231cell lines, without affecting nontumorigenic breast MCF-10A and lung BEAS cells. Additionally, Lansbermin-I prevented MCF7 cells to adhere to fibronectin and collagen, and also inhibited in vitro angiogenesis on human endothelial HUVEC cells. CONCLUSION: Our results display the first report on the antitumor and anti-metastatic effects of an RGDdisintegrin isolated from a Porthidium snake venom by possibly interfering with α2 and/or ß1-containing integrins. Thus, Lansbermin-I could be an attractive model to elucidate the role of disintegrins against breast cancer development.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Crotalid Venoms/pharmacology , Disintegrins/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Adhesion/drug effects , Cell Movement/drug effects , Cells, Cultured , Crotalid Venoms/chemistry , Crotalid Venoms/isolation & purification , Disintegrins/chemistry , Disintegrins/isolation & purification , Dose-Response Relationship, Drug , Female , Humans , Integrins/analysis , Integrins/metabolism , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Structure-Activity Relationship , Viperidae , Wound Healing/drug effects
6.
Rev. cuba. med. trop ; 71(2): e320, mayo.-ago. 2019. tab, graf
Article in Spanish | LILACS, CUMED | ID: biblio-1093558

ABSTRACT

Objetivo: evaluar la inhibición de los venenos de las serpientes Bothrops alternatus y Bothrops moojeni por los extractos vegetales de Jatropha curcas, Myrsine guianensis y Zanthoxylum monogynum, en relación con las actividades coagulante, fosfolipasa y hemorrágica. Métodos: Los extractos vegetales se obtuvieron a partir del liofilizado de hojas de Jatropha curca, Myrsine guianensis y Zanthoxylum monogynum. Se realizaron ensayos de inhibición in vitro con un grupo de control positivo (10 μg de veneno crudo), grupos experimentales que recibieron una mezcla del veneno con cada uno de los extractos, en concentraciones de 5 a 500 μg y un grupo de control negativo (500 μg de extracto). Se realizaron ensayos in vivo con grupos de ratones Balb/c (n = 4). A los ratones del grupo de control positivo se les inyectó solamente el veneno (25 μg); a los de los grupos experimentales, una mezcla del veneno con cada uno de los extractos, en concentraciones de 25 a 500 μg; y a los del grupo de control negativo, solamente extracto (500 μg). Resultados: Jatropha curcas y Myrsine guianensis inhibieron significativamente la actividad fosfolipasa a partir de la proporción 1:0,5 (veneno:extracto). Por otro lado, las actividades coagulante y hemorrágica, fueron inhibidas expresivamente a partir de las proporciones 1:1 y 1:5 con Myrsine guianensis y Jatropha curcas, respectivamente. Las actividades fosfolipasa y coagulante fueron inhibidas con Zanthoxylum monogynum a partir de las proporciones 1:5 y 1:10, respectivamente. Conclusiones: Los extractos analizados inhibieron los venenos de Bothrops alternatus y Bothrops moojeni debido a la presencia de moléculas con posibles propiedades antiofídicas(AU)


Objective: Evaluate the inhibition of venoms from the snakes Bothrops alternatus and Bothrops moojeni by plant extracts from Jatropha curcas, Myrsine guianensis and Zanthoxylum monogynum in terms of coagulant, phospholipase and hemorrhagic activities. Methods: The plant extracts were obtained by lyophilization of leaves of Jatropha curca, Myrsine guianensis and Zanthoxylum monogynum. In vitro inhibition tests were performed with a positive control group (10 μg of crude venom), experimental groups receiving a mixture of the venom with each of the extracts at concentrations of 5 to 500 μg, and a negative control group (500 μg of extract). In vivo tests were performed with Balb/c mice (n = 4). The mice in the positive control group were injected only the venom (25 μg), the experimental groups received a mixture of the venom with each of the extracts at concentrations of 25 to 500 μg, and the negative control group received only extract (500 μg). Results: Jatropha curcas and Myrsine guianensis significantly inhibited phospholipase activity at a 1:0.5 (venom:extract) proportion. Coagulant and hemorrhagic activities were markedly inhibited at 1:1 and 1:5 proportions with Myrsine guianensis and Jatropha curcas, respectively. Phospholipase and coagulant activities were inhibited with Zanthoxylum monogynum at 1:5 and 1:10 proportions, respectively. Conclusions: The extracts analyzed inhibited the venoms from Bothrops alternatus and Bothrops moojeni due to the presence of molecules with possible antiophidic properties(AU)


Subject(s)
Humans , Male , Female , Snake Bites/therapy , Plant Extracts/therapeutic use , Snake Bites/prevention & control , In Vitro Techniques/methods
7.
Curr Top Med Chem ; 19(22): 2032-2040, 2019.
Article in English | MEDLINE | ID: mdl-31340738

ABSTRACT

BACKGROUND: Phospholipases A2 (PLA2) from snake venoms have a broad potential as pharmacological tools on medicine. In this context, strongyloidiasis is a neglected parasitic disease caused by helminths of the genus Strongyloides. Currently, ivermectin is the drug of choice for treatment, however, besides its notable toxicity, therapeutic failures and cases of drug resistance have been reported. BnSP-6, from Bothorps pauloensis snake venom, is a PLA2 with depth biochemical characterization, reporting effects against tumor cells and bacteria. OBJECTIVE: The aim of this study is to demonstrate for the first time the action of the PLA2 on Strongyloides venezuelensis. METHODS: After 72 hours of treatment with BnSP-6 mortality of the infective larvae was assessed by motility assay. Cell and parasite viability was evaluated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Furthermore, autophagic vacuoles were labeled with Monodansylcadaverine (MDC) and nuclei of apoptotic cells were labeled with Propidium Iodide (PI). Tissue degeneration of the parasite was highlighted by Transmission Electron Microscopy (TEM). RESULTS: The mortality index demonstrated that BnSP-6 abolishes the motility of the parasite. In addition, the MTT assay attested the cytotoxicity of BnSP-6 at lower concentrations when compared with ivermectin, while autophagic and apoptosis processes were confirmed. Moreover, the anthelmintic effect was demonstrated by tissue degeneration observed by TEM. Furthermore, we report that BnSP-6 showed low cytotoxicity on human intestinal cells (Caco-2). CONCLUSION: Altogether, our results shed light on the potential of BNSP-6 as an anthelmintic agent, which can lead to further investigations as a tool for pharmaceutical discoveries.


Subject(s)
Anthelmintics/pharmacology , Crotalid Venoms/pharmacology , Phospholipases A2/pharmacology , Snake Venoms/pharmacology , Strongyloides/drug effects , Animals , Anthelmintics/chemistry , Anthelmintics/isolation & purification , Bothrops , Caco-2 Cells , Cell Death/drug effects , Cell Survival/drug effects , Cells, Cultured , Crotalid Venoms/chemistry , Crotalid Venoms/isolation & purification , Dose-Response Relationship, Drug , Female , Humans , Phospholipases A2/chemistry , Phospholipases A2/isolation & purification , Rats , Rats, Wistar , Snake Venoms/chemistry , Snake Venoms/isolation & purification , Strongyloides/parasitology , Structure-Activity Relationship
8.
Int J Biol Macromol ; 112: 333-342, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29391226

ABSTRACT

Activities of phospholipases (PLAs) have been linked to pathogenesis in various microorganisms, and implicated in cell invasion and so the interest in these enzymes as potential targets that could contribute to the control of parasite survival and proliferation. Chicken eggs immunized with BnSP-7, a Lys49 phospholipase A2 (PLA2) homologue from Bothrops pauloensis snake venom, represent an excellent source of polyclonal antibodies with potential inhibitory activity on parasite PLAs. Herein, we report the production, characterization and anti-parasitic effect of IgY antibodies from egg yolks of hens immunized with BnSP-7. Produced antibodies presented increasing avidity and affinity for antigenic toxin epitopes throughout immunization, attaining a plateau after 4weeks. Pooled egg yolks-purified anti-BnSP-7 IgY antibodies were able to specifically recognize different PLA2s from Bothrops pauloensis and Bothrops jararacussu venom. Antibodies also neutralized BnSP-7 cytotoxic activity in C2C12 cells. Also, the antibodies recognized targets in Leishmania (Leishmania) amazonensis and Toxoplasma gondii extracts by ELISA and immunofluorescence assays. Anti-BnSP-7 IgY antibodies were cytotoxic to T. gondii tachyzoite and L. (L.) amazonensis promastigotes, and were able to decrease proliferation of both parasites treated before infection. These data suggest that the anti-BnSP-7 IgY is an important tool for discovering new parasite targets and blocking parasitic effects.


Subject(s)
Antibodies, Anti-Idiotypic/administration & dosage , Immunoglobulins/administration & dosage , Phospholipase A2 Inhibitors/administration & dosage , Phospholipases A2/chemistry , Amino Acid Sequence , Animals , Antibodies, Anti-Idiotypic/immunology , Antiparasitic Agents/administration & dosage , Antiparasitic Agents/immunology , Bothrops/immunology , Chickens , Crotalid Venoms/antagonists & inhibitors , Crotalid Venoms/immunology , Immunoglobulins/immunology , Leishmania/drug effects , Leishmania/pathogenicity , Phospholipase A2 Inhibitors/immunology , Toxoplasma/drug effects , Toxoplasma/pathogenicity
9.
Toxicon ; 119: 84-91, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-27212627

ABSTRACT

Toxoplasmosis affects a third of the global population and presents high incidence in tropical areas. Its great relevance in public health has led to a search for new therapeutic approaches. Herein, we report the antiparasitic effects of BnSP-7 toxin, a Lys49 phospholipase A2 (PLA2) homologue from Bothrops pauloensis snake venom, on Toxoplasma gondii. In an MTT assay, BnSP-7 presented significant cytotoxicity against host HeLa cells at higher doses (200 µg/mL to 50 µg/mL), whereas lower doses (25 µg/mL to 1.56 µg/mL) produced low cytotoxicity. Furthermore, the toxin showed no effect on T. gondii tachyzoite viability when evaluated by trypan blue exclusion, but decreased both adhesion and parasite proliferation when tachyzoites were treated before infection. We also measured cytokines in supernatants collected from HeLa cells infected with T. gondii tachyzoites previously treated with RPMI or BnSP-7, which revealed enhancement of only MIF and IL-6 cytokines levels in supernatants of HeLa cells after BnSP-7 treatment. Our results showed that the BnSP-7 PLA2 exerts an anti-Toxoplasma effect at a lower dose than that required to induce cytotoxicity in HeLa cells, and also modulates the immune response of host cells. In this sense, the anti-parasitic effect of BnSP-7 PLA2 demonstrated in the present study opens perspectives for use of this toxin as a tool for future studies on toxoplasmosis.


Subject(s)
Crotalid Venoms/toxicity , Lysine/chemistry , Phospholipases A2/toxicity , Toxoplasma/drug effects , Amino Acid Sequence , Chromatography, High Pressure Liquid , Crotalid Venoms/enzymology , Electrophoresis, Polyacrylamide Gel , HeLa Cells , Humans , Phospholipases A2/chemistry , Sequence Homology, Amino Acid
10.
Appl Microbiol Biotechnol ; 99(23): 9971-86, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26227411

ABSTRACT

Snake venom serine proteases (SVSPs) act primarily on plasma proteins related to blood clotting and are considered promising for the treatment of several hemostatic disorders. We report the heterologous expression of a serine protease from Crotalus durissus collilineatus, named collinein-1, in Pichia pastoris, as well as the enzymatic comparative characterization of the toxin in native and recombinant forms. The complementary DNA (cDNA) encoding collinein-1 was amplified from cDNA library of C. d. collilineatus venom gland and cloned into the pPICZαA vector. The recombinant plasmid was used to transform cells of KM71H P. pastoris. Heterologous expression was induced by methanol and yielded 56 mg of recombinant collinein-1 (rCollinein-1) per liter of culture. The native collinein-1 was purified from C. d. collilineatus venom, and its identity was confirmed by amino acid sequencing. The native and recombinant enzymes showed similar effects upon bovine fibrinogen by releasing preferentially fibrinopeptide A. Although both enzymes have induced plasma coagulation, native Colinein-1 has shown higher coagulant activity. The serine proteases were able to hydrolyze the chromogenic substrates S-2222, S-2238, and S2302. Both enzymes showed high stability on different pH and temperature, and their esterase activities were inhibited in the presence of Zn2+ and Cu2+. The serine proteases showed similar k cat/K m values in enzyme kinetics assays, suggesting no significant differences in efficiency of these proteins to hydrolyze the substrate. These results demonstrated that rCollinein-1 was expressed with functional integrity on the evaluated parameters. The success in producing a functionally active recombinant SVSP may generate perspectives to their future therapeutic applications.


Subject(s)
Crotalid Venoms/enzymology , Crotalus , Serine Proteases/isolation & purification , Serine Proteases/metabolism , Animals , Blood Coagulation , Cattle , Cloning, Molecular , Copper/metabolism , Enzyme Inhibitors/metabolism , Enzyme Stability , Fibrinogen/metabolism , Fibrinopeptide A/metabolism , Gene Expression , Hydrogen-Ion Concentration , Hydrolysis , Kinetics , Pichia/genetics , Pichia/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Serine Proteases/chemistry , Serine Proteases/genetics , Temperature , Zinc/metabolism
11.
Int J Biol Macromol ; 74: 568-74, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25541358

ABSTRACT

Here we evaluate the effects of BpLec, a C-type lectin isolated from Bothrops pauloensis snake venom, on Toxoplasma gondii parasitism. BpLec (0.195-12.5 µg/mL) did not interfere with HeLa (host cell) viability by MTT assay, whereas higher doses decreased viability and changed HeLa morphology. In addition, the host cell treatment before infection did not influence adhesion and proliferation indexes. BpLec did not alter T. gondii tachyzoite viability, as carried out by trypan blue exclusion, but decreased both adhesion and parasite replication, when tachyzoites were treated before infection. Galactose (0.4 M) inhibited the BpLec effect on adhesion assays, suggesting that BpLec probably recognize some glycoconjugate from T. gondii membrane. Additionally, we performed cytokine measurements from supernatants collected from HeLa cells infected with T. gondii tachyzoites previously treated with RPMI or BpLec. MIF and IL-6 productions by HeLa cells were increased by BpLec treatment. Also, TGF-ß1 secretion was diminished post-infection, although this effect was not dependent on BpLec treatment. Taken together, our results show that BpLec is capable of reducing T. gondii parasitism after tachyzoite treatment and may represent an interesting tool in the search for parasite antigens involved in these processes.


Subject(s)
Bothrops/metabolism , Coccidiostats/chemistry , Coccidiostats/pharmacology , Lectins, C-Type/chemistry , Toxoplasma/drug effects , Venoms/chemistry , Animals , Cell Line , Cell Survival/drug effects , Coccidiostats/isolation & purification , Cytokines/metabolism , HeLa Cells , Humans , Lectins, C-Type/isolation & purification
12.
PLoS One ; 9(2): e86828, 2014.
Article in English | MEDLINE | ID: mdl-24551041

ABSTRACT

BACKGROUND: Venom-induced acute kidney injury (AKI) is a frequent complication of Bothrops snakebite with relevant morbidity and mortality. The aim of this study was to assess the effects of Schizolobium parahyba (SP) extract, a natural medicine with presumed anti-Bothrops venom effects, in an experimental model of Bothrops jararaca venom (BV)-induced AKI. METHODOLOGY: Groups of 8 to 10 rats received infusions of 0.9% saline (control, C), SP 2 mg/kg, BV 0.25 mg/kg and BV immediately followed by SP (treatment, T) in the doses already described. After the respective infusions, animals were assessed for their glomerular filtration rate (GFR, inulin clearance), renal blood flow (RBF, Doppler), blood pressure (BP, intra-arterial transducer), renal vascular resistance (RVR), urinary osmolality (UO, freezing point), urinary neutrophil gelatinase-associated lipocalin (NGAL, enzyme-linked immunosorbent assay [ELISA]), lactate dehydrogenase (LDH, kinetic method), hematocrit (Hct, microhematocrit), fibrinogen (Fi, Klauss modified) and blinded renal histology (acute tubular necrosis score). PRINCIPAL FINDINGS: BV caused significant decreases in GFR, RBF, UO, HcT and Fi; significant increases in RVR, NGAL and LDH; and acute tubular necrosis. SP did not prevent these changes; instead, it caused a significant decrease in GFR when used alone. CONCLUSION: SP administered simultaneously with BV, in an approximate 10∶1 concentration, did not prevent BV-induced AKI, hemolysis and fibrinogen consumption. SP used alone caused a decrease in GFR.


Subject(s)
Acute Kidney Injury/drug therapy , Bothrops/metabolism , Fabaceae/chemistry , Plant Extracts/therapeutic use , Acute Kidney Injury/chemically induced , Acute Kidney Injury/physiopathology , Acute Kidney Injury/urine , Acute-Phase Proteins/urine , Animals , Biomarkers/urine , Cell Adhesion Molecules/urine , Crotalid Venoms , Hematocrit , Hemodynamics/drug effects , Kidney Function Tests , Kidney Tubular Necrosis, Acute/complications , Kidney Tubular Necrosis, Acute/pathology , Kidney Tubular Necrosis, Acute/physiopathology , Kidney Tubular Necrosis, Acute/urine , Lipocalin-2 , Lipocalins/urine , Male , Phytotherapy , Plant Extracts/pharmacology , Proto-Oncogene Proteins/urine , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL