Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Mol Phylogenet Evol ; : 108090, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38723791

ABSTRACT

Co-distributed taxa can respond both similarly or differently to the same climatic and geological events, resulting in a range of phylogeographic patterns across the region. Using a nested approach on a taxonomically diverse yet morphologically conservative group of agamid lizards, we first aimed to evaluate more precisely the extent of phylogeographic structuring within the genus. Then, focusing on four lineages within the more widespread species, we assessed the impact of biogeographic barriers on phylogeographic structuring and demographic history of species, comparing to patterns previously observed in co-distributed taxa. These species occur in the Australian Monsoonal Tropics, a vast tropical savanna system with high richness and endemism associated with environmental heterogeneity and past climate fluctuations. The employment of genomic data helped to determine the relationships between specific taxa that were previously difficult to place. We found a local influence of biogeographic and climatic breaks on population dynamics, analogous to other species. We detected high levels of population structure in the West Kimberley and Arnhem Plateau, which are already known for high endemism. However, we also highlighted unique lineages in areas that have been overlooked until recently, in the South Kimberley and West Top End. Climatic and geographical features in the Arnhem Plateau act as a soft barrier between populations in the east and west regions of the Top End. These observations reflect patterns observed for other vertebrates across this rich biome, indicating how climatic variation, species' ecology, and landscape features interact to shape regional diversity and endemism.

2.
Zootaxa ; 5406(1): 1-36, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38480166

ABSTRACT

The brown tree frog (Litoria ewingii) is a relatively widespread, commonly encountered pelodryadid frog from south-eastern Australia, known for its characteristic whistling call. The distribution of Litoria ewingii spans over more than 350,000 km2, encompassing a range of moist temperate habitats, and is fragmented by well-known biogeographic barriers. A preliminary analysis of mitochondrial DNA sequences revealed evidence for deep phylogenetic structure between some of these fragmented populations. In this study, we sought to re-evaluate the systematics and taxonomy of Litoria ewingii sensu lato by analysing variation in nuclear and mitochondrial DNA, adult morphology and male advertisement calls throughout the species range. Our analyses reveal two additional, deeply divergent and allopatric lineages in South Australia. We herein re-describe Litoria ewingii from Tasmania, southern New South Wales, Victoria and south-eastern South Australia, resurrect the name Litoria calliscelis for a species occurring in the Mount Lofty Ranges and Fleurieu Peninsula in South Australia, and describe a new species, Litoria sibilus sp. nov., endemic to Kangaroo Island.


Subject(s)
Anura , DNA, Mitochondrial , Animals , Phylogeny , South Australia , DNA, Mitochondrial/genetics
3.
Environ Pollut ; 332: 122004, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37302786

ABSTRACT

Lead (Pb) toxicity, through ingestion of lead ammunition in carcasses, is a threat to scavenging birds worldwide, but has received little attention in Australia. We analyzed lead exposure in the wedge-tailed eagle (Aquila audax), the largest raptor species found in mainland Australia and a facultative scavenger. Eagle carcasses were collected opportunistically throughout south-eastern mainland Australia between 1996 and 2022. Lead concentrations were measured in bone samples from 62 animals via portable X-ray fluorescence (XRF). Lead was detected (concentration >1 ppm) in 84% (n = 52) of the bone samples. The mean lead concentration of birds in which lead was detected was 9.10 ppm (±SE 1.66). Bone lead concentrations were elevated (10-20 ppm) in 12.9% of samples, and severe (>20 ppm) in 4.8% of samples. These proportions are moderately higher than equivalent data for the same species from the island of Tasmania, and are comparable to data from threatened eagle species from other continents. Lead exposure at these levels is likely to have negative impacts on wedge-tailed eagles at the level of the individual and perhaps at a population level. Our results suggest that studies of lead exposure in other Australian avian scavenger species are warranted.


Subject(s)
Eagles , Lead Poisoning , Animals , Lead/analysis , Australia , Weapons
4.
Proc Biol Sci ; 290(1997): 20230089, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37122254

ABSTRACT

In many regions fire regimes are changing due to anthropogenic factors. Understanding the responses of species to fire can help to develop predictive models and inform fire management decisions. Spiders are a diverse and ubiquitous group and can offer important insights into the impacts of fire on invertebrates and whether these depend on environmental factors, phylogenetic history or functional traits. We conducted phylogenetic comparative analyses of data from studies investigating the impacts of fire on spiders. We investigated whether fire affects spider abundance or presence and whether ecologically relevant traits or site-specific factors influence species' responses to fire. Although difficult to make broad generalizations about the impacts of fire due to variation in site- and fire-specific factors, we find evidence that short fire intervals may be a threat to some spiders, and that fire affects abundance and species compositions in forests relative to other vegetation types. Orb and sheet web weavers were also more likely to be absent after fire than ambush hunters, ground hunters and other hunters suggesting functional traits may affect responses. Finally, we show that analyses of published data can be used to detect broad-scale patterns and provide an alternative to traditional meta-analytical approaches.


Subject(s)
Fires , Spiders , Animals , Spiders/physiology , Ecosystem , Phylogeny , Forests
5.
Ecol Evol ; 12(3): e8627, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35342559

ABSTRACT

Much attention is paid in conservation planning to the concept of a species, to ensure comparability across studies and regions when classifying taxa against criteria of endangerment and setting priorities for action. However, various jurisdictions now allow taxonomic ranks below the level of species and nontaxonomic intraspecific divisions to be factored into conservation planning-subspecies, key populations, evolutionarily significant units, or designatable units. Understanding patterns of genetic diversity and its distribution across the landscape is a key component in the identification of species boundaries and determination of substantial geographic structure within species. A total of 12,532 reliable polymorphic SNP loci were generated from 63 populations (286 individuals) covering the distribution of the Australian eastern three-lined skink, Bassiana duperreyi, to assess genetic population structure in the form of diagnosable lineages and their distribution across the landscape, with particular reference to the recent catastrophic bushfires of eastern Australia. Five well-supported diagnosable operational taxonomic units (OTUs) existed within B. duperreyi. Low levels of divergence of B. duperreyi between mainland Australia and Tasmania (no fixed allelic differences) support the notion of episodic exchange of alleles across Bass Strait (ca 60 m, 25 Kya) during periods of low sea level during the Upper Pleistocene rather than the much longer period of isolation (1.7 My) indicated by earlier studies using mitochondrial sequence variation. Our study provides foundational work for the detailed taxonomic re-evaluation of this species complex and the need for biodiversity assessment to include an examination of cryptic species and/or cryptic diversity below the level of species. Such information on lineage diversity within species and its distribution in the context of disturbance at a regional scale can be factored into conservation planning regardless of whether a decision is made to formally diagnose new species taxonomically and nomenclaturally.

6.
Mol Phylogenet Evol ; 167: 107358, 2022 02.
Article in English | MEDLINE | ID: mdl-34774764

ABSTRACT

Apicomplexa is a large monophyletic phylum of unicellular, parasitic organisms. Reptiles are hosts to both haemosporidian (Haemosporida) and hemogregarine (Eucoccidiorida) apicomplexan blood parasites. Within reptiles our understanding of their diversity remains limited, with a paucity of information from Australia, despite a high diversity of squamates (snakes and lizards). We provide a preliminary assessment of haemosporidian and hemogregarine diversity occurring in lizards across northern tropical Australia, building on existing data with results from a microscopy and genetic assessment. We screened total of 233 blood slides using microscopy and detected hemogregarines in 25 geckos, 2 skinks and 1 agamid, while haemosporidians were detected in 13 geckos. DNA sequencing of 28 samples of the hemogregarine 18S rRNA (∼900 bp) nuclear gene revealed five lineages of Australian lizard hemogregarines within heteroxenous adeleids. We sequenced 10 samples of Haemosporida mtDNA (cytb & coI: ∼1313 bp) and phylogenetic analysis with 30 previously published sequences revealed that the Australian Haemosporida grouped within the Haemoproteidae but were not supported as a monophyletic clade. Our results demonstrate that there is significant undocumented evolutionary diversity in Australian lizard haemosporidian and hemogregarine parasites, with preliminary evidence of significantly higher infection rates in geckos.


Subject(s)
Haemosporida , Lizards , Parasites , Animals , Australia , Haemosporida/genetics , Lizards/genetics , Phylogeny
7.
Mol Ecol ; 30(17): 4276-4291, 2021 09.
Article in English | MEDLINE | ID: mdl-34216506

ABSTRACT

Differences in the geographic scale and depth of phylogeographic structure across codistributed taxa can reveal how microevolutionary processes such as population isolation and persistence drive diversification. In turn, environmental heterogeneity, species' traits, and historical biogeographic barriers may influence the potential for isolation and persistence. Using extensive SNP data and a combination of population genetic summary statistics and landscape genomic analyses, we explored predictors of the scale and depth of phylogeographic structure in codistributed lizard taxa from the topographically and climatically complex monsoonal tropics (AMT) of Australia. We first resolved intraspecific lineages and then tested whether genetic divergence across space within lineages is related to isolation by distance, resistance and/or environment and whether these factors differ across genera or between rock-related versus habitat generalist taxa. We then tested whether microevolutionary processes within lineages explain differences in the geographic scale and depth of intraspecific phylogeographic lineages. The results indicated that landscape predictors of phylogeographic structure differ between taxa. Within lineages, there was prevalent isolation by distance, but the strength of isolation by distance is independent of the taxonomic family, habitat specialization, and climate. Isolation by environment is the strongest predictor of landscape-scale genetic divergence for all taxa, with both temperature and precipitation acting as limiting factors. The strength of isolation by distance does not predict the geographic scale of the phylogeographic structure. However, more localized lineages had higher mean individual heterozygosity and less negative Tajima's D. This result implies that finer-scale phylogeographic structuring within species is associated with larger and more stable populations and, hence, persistence.


Subject(s)
DNA, Mitochondrial , Lizards , Animals , Australia , Genetic Variation , Lizards/genetics , Phylogeny , Phylogeography
8.
PLoS Biol ; 19(6): e3001210, 2021 06.
Article in English | MEDLINE | ID: mdl-34061821

ABSTRACT

Global biodiversity loss is a profound consequence of human activity. Disturbingly, biodiversity loss is greater than realized because of the unknown number of undocumented species. Conservation fundamentally relies on taxonomic recognition of species, but only a fraction of biodiversity is described. Here, we provide a new quantitative approach for prioritizing rigorous taxonomic research for conservation. We implement this approach in a highly diverse vertebrate group-Australian lizards and snakes. Of 870 species assessed, we identified 282 (32.4%) with taxonomic uncertainty, of which 17.6% likely comprise undescribed species of conservation concern. We identify 24 species in need of immediate taxonomic attention to facilitate conservation. Using a broadly applicable return-on-investment framework, we demonstrate the importance of prioritizing the fundamental work of identifying species before they are lost.


Subject(s)
Biodiversity , Classification , Research , Animals , Australia , Lizards/classification , Snakes/classification
9.
Syst Biol ; 69(2): 294-307, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31372642

ABSTRACT

Morphologically cryptic taxa have proved to be a long-standing challenge for taxonomists. Lineages that show strong genomic structuring across the landscape but are phenotypically similar pose a conundrum, with traditional morphological analyses of these cryptic lineages struggling to keep up with species delimitation advances. Micro X-ray computed tomography (CT) combined with geometric morphometric analyses provides a promising avenue for identification of morphologically cryptic taxa, given its ability to detect subtle differences in anatomical structures. However, this approach has yet to be used in combination with genomic data in a comparative analytical framework to distinguish cryptic taxa. We present an integrative approach incorporating genomic and geometric morphometric evidence to assess the species delimitation of grassland earless dragons (Tympanocryptis spp.) in north-eastern Australia. Using mitochondrial and nuclear genes (ND2 and RAG1, respectively), along with $>$8500 SNPs (nuclear single nucleotide polymorphisms), we assess the evolutionary independence of target lineages and several closely related species. We then integrate phylogenomic data with osteological cranial variation between lineages using landmark-based analyses of three-dimensional CT models. High levels of genomic differentiation between the three target lineages were uncovered, also supported by significant osteological differences. By incorporating multiple lines of evidence, we provide strong support for three undescribed cryptic lineages of Tympanocryptis in north-eastern Australia that warrant taxonomic review. Our approach demonstrates the successful application of CT with integrative taxonomic approaches for cryptic species delimitation, which is broadly applicable across vertebrates containing morphologically similar yet genetically distinct lineages. Additionally, we provide a review of recent integrative taxonomic approaches for cryptic species delimitation and an assessment of how our approach can value-add to taxonomic research.


Subject(s)
Classification/methods , Phylogeny , Tomography, X-Ray Computed , Animals , Genetic Speciation , Lizards/classification , Species Specificity
10.
R Soc Open Sci ; 6(5): 190233, 2019 May.
Article in English | MEDLINE | ID: mdl-31218062

ABSTRACT

Taxonomic research is of fundamental importance in conservation management of threatened species, providing an understanding of species diversity on which management plans are based. The grassland earless dragon lizards (Agamidae: Tympanocryptis) of southeastern Australia have long been of conservation concern but there have been ongoing taxonomic uncertainties. We provide a comprehensive taxonomic review of this group, integrating multiple lines of evidence, including phylogeography (mtDNA), phylogenomics (SNPs), external morphology and micro X-ray CT scans. Based on these data we assign the lectotype of T. lineata to the Canberra region, restrict the distribution of T. pinguicolla to Victoria and name two new species: T. osbornei sp. nov. (Cooma) and T. mccartneyi sp. nov. (Bathurst). Our results have significant conservation implications. Of particular concern is T. pinguicolla, with the last confident sighting in 1969, raising the possibility of the first extinction of a reptile on mainland Australia. However, our results are equivocal as to whether T. pinguicolla is extant or extinct, emphasizing the immediate imperative for continued surveys to locate any remaining populations of T. pinguicolla. We also highlight the need for a full revision of conservation management plans for all the grassland earless dragons.

11.
R Soc Open Sci ; 6(12): 191166, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31903207

ABSTRACT

Cryptic lineages, comprising species complexes with deep genetic structuring across the landscape but without distinct morphological differences, impose substantial difficulties for systematists and taxonomists in determining true species diversity. Here, we present an integrative approach that combines data from phylogeography and geometric morphometric analyses of three-dimensional cranial models to revisit the uncertain taxonomy of earless dragons from southern and central Australia that at one time or another have been included under the name Tympanocryptis lineata. Our approach finds strong support for seven previously described species, and more importantly, five undescribed Tympanocryptis taxa for which we provide a taxonomic treatment. We also find evidence of introgression and hybridization in three discrete contact zones between lineages, supported by mitochondrial and nuclear genes, as well as morphological analyses. With a sampling design that includes at least five individuals for each genetic lineage with corresponding X-ray microcomputed tomography scans, we perform comparative evolutionary analyses to show that there is a significant phylogenetic signal in Tympanocryptis cranial shape. Our results demonstrate the importance of using multiple specimens in each genetic lineage, particularly in cases of potential hybridization, and that geometric morphometrics, when used in an integrative framework, is a powerful tool in species delimitation across cryptic lineages. Our results lay the groundwork for future evolutionary studies in this widespread group across multiple environmental types and identify several species of immediate conservation concern with a focus on T. petersi sp. nov. We suggest that this species has undergone significant population declines and warrants a full conservation assessment.

12.
R Soc Open Sci ; 4(7): 161061, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28791133

ABSTRACT

Next-generation sequencing (NGS) approaches are increasingly being used to generate multi-locus data for phylogeographic and evolutionary genetics research. We detail the applicability of a restriction enzyme-mediated genome complexity reduction approach with subsequent NGS (DArTseq) in vertebrate study systems at different evolutionary and geographical scales. We present two case studies using SNP data from the DArTseq molecular marker platform. First, we used DArTseq in a large phylogeographic study of the agamid lizard Ctenophorus caudicinctus, including 91 individuals and spanning the geographical range of this species across arid Australia. A low-density DArTseq assay resulted in 28 960 SNPs, with low density referring to a comparably reduced set of identified and sequenced markers as a cost-effective approach. Second, we applied this approach to an evolutionary genetics study of a classic frog hybrid zone (Litoria ewingii-Litoria paraewingi) across 93 individuals, which resulted in 48 117 and 67 060 SNPs for a low- and high-density assay, respectively. We provide a docker-based workflow to facilitate data preparation and analysis, then analyse SNP data using multiple methods including Bayesian model-based clustering and conditional likelihood approaches. Based on comparison of results from the DArTseq platform and traditional molecular approaches, we conclude that DArTseq can be used successfully in vertebrates and will be of particular interest to researchers working at the interface between population genetics and phylogenetics, exploring species boundaries, gene exchange and hybridization.

13.
Immunogenetics ; 69(2): 101-111, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27717988

ABSTRACT

The high levels of polymorphism and allelic diversity which characterise genes in the major histocompatibility complex (MHC) are thought to be generated and maintained through the combined effects of different evolutionary processes. Here, we characterised exon 2 of the MHC class II ß genes in two congeneric passerine species, the spotted (Pardalotus punctatus) and striated pardalote (Pardalotus striatus). We estimated the levels of allelic diversity and tested for signatures of recombination, gene conversion and balancing selection to determine if these processes have influenced MHC variation in the two species. Both species showed high levels of polymorphism and allelic diversity, as well as evidence of multiple gene loci and putative pseudogenes based on the presence of stop codons. We found higher levels of MHC diversity in the striated pardalote than the spotted pardalote, based on the levels of individual heterozygosity, sequence divergence and number of polymorphic sites. The observed differences may reflect variable selection pressure on the species, resulting from differences in patterns of movement among populations. We identified strong signatures of historical balancing selection, recombination and gene conversion at the sequence level, indicating that MHC variation in the two species has been shaped by a combination of processes.


Subject(s)
Exons/genetics , Gene Conversion/genetics , Histocompatibility Antigens Class II/genetics , Passeriformes/genetics , Polymorphism, Genetic/genetics , Recombination, Genetic/genetics , Selection, Genetic/genetics , Amino Acid Sequence , Animals , Evolution, Molecular , Phylogeny , Sequence Homology, Amino Acid , Species Specificity
14.
Open Biol ; 6(10)2016 10.
Article in English | MEDLINE | ID: mdl-27784790

ABSTRACT

With over 9000 species, squamates, which include lizards and snakes, are the largest group of reptiles and second-largest order of vertebrates, spanning a vast array of appendicular skeletal morphology. As such, they provide a promising system for examining developmental and molecular processes underlying limb morphology. Using the central bearded dragon (Pogona vitticeps) as the primary study model, we examined limb morphometry throughout embryonic development and characterized the expression of three known developmental genes (GHR, Pitx1 and Shh) from early embryonic stage through to hatchling stage via reverse transcription quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC). In this study, all genes were found to be transcribed in both the forelimbs and hindlimbs of P. vitticeps. While the highest level of GHR expression occurred at the hatchling stage, Pitx1 and Shh expression was greatest earlier during embryogenesis, which coincides with the onset of the differentiation between forelimb and hindlimb length. We compared our finding of Pitx1 expression-a hindlimb-determining gene-in the forelimbs of P. vitticeps to that in a closely related Australian agamid lizard, Ctenophorus pictus, where we found Pitx1 expression to be more highly expressed in the hindlimb compared with the forelimb during early and late morphogenesis-a result consistent with that found across other tetrapods. Expression of Pitx1 in forelimbs has only rarely been documented, including via in situ hybridization in a chicken and a frog. Our findings from both RT-qPCR and IHC indicate that further research across a wider range of tetrapods is needed to more fully understand evolutionary variation in molecular processes underlying limb morphology.


Subject(s)
Forelimb/embryology , Hindlimb/embryology , Lizards/embryology , Nerve Tissue Proteins/genetics , Animals , Forelimb/metabolism , Gene Expression Regulation, Developmental , Hindlimb/metabolism , Lizards/genetics , Lizards/metabolism , Models, Animal , Morphogenesis , Nerve Tissue Proteins/metabolism
15.
BMC Evol Biol ; 16(1): 112, 2016 05 21.
Article in English | MEDLINE | ID: mdl-27206579

ABSTRACT

BACKGROUND: The major histocompatibility complex (MHC) plays a crucial role in the adaptive immune system and has been extensively studied across vertebrate taxa. Although the function of MHC genes appears to be conserved across taxa, there is great variation in the number and organisation of these genes. Among avian species, for instance, there are notable differences in MHC structure between passerine and non-passerine lineages: passerines typically have a high number of highly polymorphic MHC paralogs whereas non-passerines have fewer loci and lower levels of polymorphism. Although the occurrence of highly polymorphic MHC paralogs in passerines is well documented, their evolutionary origins are relatively unexplored. The majority of studies have focussed on the more derived passerine lineages and there is very little empirical information on the diversity of the MHC in basal passerine lineages. We undertook a study of MHC diversity and evolutionary relationships across seven species from four families (Climacteridae, Maluridae, Pardalotidae, Meliphagidae) that comprise a prominent component of the basal passerine lineages. We aimed to determine if highly polymorphic MHC paralogs have an early evolutionary origin within passerines or are a more derived feature of the infraorder Passerida. RESULTS: We identified 177 alleles of the MHC class II ß exon 2 in seven basal passerine species, with variation in numbers of alleles across individuals and species. Overall, we found evidence of multiple gene loci, pseudoalleles, trans-species polymorphism and high allelic diversity in these basal lineages. Phylogenetic reconstruction of avian lineages based on MHC class II ß exon 2 sequences strongly supported the monophyletic grouping of basal and derived passerine species. CONCLUSIONS: Our study provides evidence of a large number of highly polymorphic MHC paralogs in seven basal passerine species, with strong similarities to the MHC described in more derived passerine lineages rather than the simpler MHC in non-passerine lineages. These findings indicate an early evolutionary origin of highly polymorphic MHC paralogs in passerines and shed light on the evolutionary forces shaping the avian MHC.


Subject(s)
Evolution, Molecular , Histocompatibility Antigens Class II/genetics , Passeriformes/genetics , Phylogeny , Songbirds/genetics , Alleles , Animals , Australia , Base Sequence , Exons/genetics , Genes, MHC Class II , Genetic Loci , Polymorphism, Genetic
16.
Am Nat ; 186(6): E144-61, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26655991

ABSTRACT

Species diversification often results from divergent evolution of ecological or social signaling traits. Theoretically, a combination of the two may promote speciation, however, empirical examples studying how social signal and ecological divergence might be involved in diversification are rare in general and typically do not consider range overlap as a contributing factor. We show that ecologically distinct lineages within the Australian sand dragon species complex (including Ctenophorus maculatus, Ctenophorus fordi, and Ctenophorus femoralis) have diversified recently, diverging in ecologically relevant and social signaling phenotypic traits as arid habitats expanded and differentiated. Diversification has resulted in repeated and independent invasion of distinct habitat types, driving convergent evolution of similar phenotypes. Our results suggest that parapatry facilitates diversification in visual signals through reinforcement as a hybridization-avoidance mechanism. We show that particularly striking variation in visual social signaling traits is better explained by the extent of lineage parapatry relative to ecological or phylogenetic divergence, suggesting that these traits reinforce divergence among lineages initiated by ecologically adaptive evolution. This study provides a rare empirical example of a repeated, intricate relationship between ecological and social signal evolution during diversification driven by ecological divergence and the evolution of new habitats, thereby supporting emergent theories regarding the importance of both ecological and social trait evolution throughout speciation.


Subject(s)
Biological Evolution , Lizards/classification , Lizards/genetics , Animals , Australia , DNA, Mitochondrial , Ecosystem , Genetic Speciation , Phenotype , Phylogeny , Species Specificity
17.
Zootaxa ; 4039(1): 85-117, 2015 Nov 03.
Article in English | MEDLINE | ID: mdl-26624468

ABSTRACT

Recent work on species complexes of the pebble-mimic dragons of the Australian genus Tympanocryptis has greatly clarified evolutionary relationships among taxa and also indicated that species diversity has been severely underestimated. Here we provide a morphological and molecular appraisal of variation in the T. cephalus species-group and find evidence for recognizing five species-level lineages from Western Australia. Four species-level lineages are strongly supported with a combined mitochondrial and nuclear DNA Bayesian analysis (a fifth population from the Gascoyne region lacked tissue samples). Morphologically, we found subtle, yet consistent, differences among the populations in scalation, color and pattern. True T. cephalus Günther is restricted to the coastal Pilbara region and characterized by five dark blotches on the dorsum, keeled ventrals, and other characters. Two other lineages within the Pilbara, from the Hamersley range and Fortescue/northern Pilbara region, differed from T. cephalus senso stricto by possessing a more elongate body and a plain dorsum. Furthermore, the Hamersley lineage differed from the Fortescue lineage by possessing slightly more reddish coloration and feeble keeling on the snout. Although there are few specimens and no tissue samples available for the Gascoyne population, these individuals are larger, have rugose scales on the snout, and possess scattered enlarged tubercles with three large blotches on the dorsum. The name T. cephalus gigas Mitchell is available for this population. The most widespread lineage, and the one best represented in collections and in field guides, occurs throughout central Western Australia. These Goldfield populations are characterized by a protruding snout, narrow rostral, and uniform reddish-brown coloration, often with a dark wash. Based on the genetic and morphological differences, we redescribe T. cephalus, resurrect and elevate T. gigas to a full species and designate a neotype for this taxon, and describe three lineages as new species (T. diabolicus sp. nov., T. fortescuensis sp. nov., T. pseudopsephos sp. nov.).


Subject(s)
Lizards/classification , Animal Distribution , Animal Structures/anatomy & histology , Animal Structures/growth & development , Animals , Australia , Body Size , DNA, Mitochondrial/genetics , Ecosystem , Female , Lizards/anatomy & histology , Lizards/genetics , Lizards/growth & development , Male , Molecular Sequence Data , Organ Size , Phylogeny
18.
R Soc Open Sci ; 2(8): 140255, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26361543

ABSTRACT

Two pervasive and fundamental impacts of urbanization are the loss and fragmentation of natural habitats. From a genetic perspective, these impacts manifest as reduced genetic diversity and ultimately reduced genetic viability. The growling grass frog (Litoria raniformis) is listed as vulnerable to extinction in Australia, and endangered in the state of Victoria. Remaining populations of this species in and around the city of Melbourne are threatened by habitat loss, degradation and fragmentation due to urban expansion. We used mitochondrial DNA (mtDNA) and microsatellites to study the genetic structure and diversity of L. raniformis across Melbourne's urban fringe, and also screened four nuclear gene regions (POMC, RAG-1, Rhod and CRYBA1). The mtDNA and nuclear DNA sequences revealed low levels of genetic diversity throughout remnant populations of L. raniformis. However, one of the four regions studied, Cardinia, exhibited relatively high genetic diversity and several unique haplotypes, suggesting this region should be recognized as a separate Management Unit. We discuss the implications of these results for the conservation of L. raniformis in urbanizing landscapes, particularly the potential risks and benefits of translocation, which remains a contentious management approach for this species.

19.
Zootaxa ; 3873(1): 49-61, 2014 Oct 14.
Article in English | MEDLINE | ID: mdl-25544205

ABSTRACT

We describe a new species of large Oedura from the Oscar Range on the southern edge of the Kimberley Craton in north-western Australia. Oedura murrumanu sp. nov. can be distinguished from all congeners by the combination of large size (snout-vent length to 103 mm), moderately long and slightly swollen tail, tiny scales on the dorsum, fringe of laterally expanded lamellae on each digit, and 6-7 paired distal subdigital lamellae on the fourth toe. The new species is the first endemic vertebrate known from the limestone ranges of the southern Kimberley; however, this area remains poorly surveyed and further research (particularly wet season surveys and genetic analyses) is required to better characterise regional biodiversity values.


Subject(s)
Lizards/anatomy & histology , Animals , Female , Lizards/classification , Male , Tail/anatomy & histology , Western Australia
20.
Mol Phylogenet Evol ; 81: 86-95, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25242002

ABSTRACT

The Australian scincid genus Pseudemoia comprises six morphologically similar species restricted to temperate south-eastern Australia. Due to the high degree of morphological conservatism, phylogenetic relationships and taxonomic status within the Pseudemoia entrecasteauxii complex (comprising the nominal species P. entrecasteauxii, P. cryodroma, and P. pagenstecheri) remains unresolved. To further investigate the phylogenetic relationships and taxonomic status of Pseudemoia spp., and to test the hypothesis that P. cryodroma evolved from hybridization between P. entrecasteauxii and P. pagenstecheri, we sequenced one mitochondrial locus (ND4) and five nuclear loci (ß-globin, LGMN, PRLR, Rhodopsin, RPS8). While we find strong support for the monophyly of the P. entrecasteauxii complex, there exists marked incongruence between the mitochondrial and nuclear markers, particularly in regards to the high altitude specialist, P. cryodroma. The most parsimonious explanation of this discordance is historic mitochondrial introgression, although a hybrid origin for P. cryodroma cannot be completely rejected. Within P. pagenstecheri sensu lato, we identified a strongly supported, highly divergent yet morphologically cryptic lineage restricted to northern New South Wales. Although more weakly supported by the nuDNA, we also identified a second geographically distinct lineage of P. pagenstecheri s.l., which may warrant separate conservation management. Our study reveals a more complex evolutionary history of the genus Pseudemoia than previously appreciated and contributes to our understanding of the biogeography and evolution of Australian mesic zone fauna.


Subject(s)
Biological Evolution , Lizards/classification , Phylogeny , Animals , Australia , Bayes Theorem , Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Hybridization, Genetic , Lizards/genetics , Models, Genetic , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...