Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 72(15): 8704-8714, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38572931

ABSTRACT

Miltiradiene serves as a crucial precursor in the synthesis of various high-value abietane-type diterpenes, exhibiting diverse pharmacological activities. Previous efforts to enhance miltiradiene production have primarily focused on the mevalonate acetate (MVA) pathway. However, limited emphasis has been placed on optimizing the supply of acetyl-CoA and NADPH. In this study, we constructed a platform yeast strain for miltiradiene production by reinforcing the biosynthetic pathway of geranylgeranyl diphosphate (GGPP) and acetyl-CoA, and addressing the imbalance between the supply and demand of the redox cofactor NADPH within the cytoplasm, resulting in an increase in miltiradiene yield to 1.31 g/L. Furthermore, we conducted modifications to the miltiradiene synthase fusion protein tSmKSL1-CfTPS1. Finally, the comprehensive engineering strategies and protein modification strategies culminated in 1.43 g/L miltiradiene in the engineered yeast under shake flask culture conditions. Overall, our work established efficient yeast cell factories for miltiradiene production, providing a foothold for heterologous biosynthesis of abietane-type diterpenes.


Subject(s)
Diterpenes , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Abietanes , Acetyl Coenzyme A/metabolism , NADP/metabolism , Diterpenes/metabolism , Metabolic Engineering/methods
2.
Med Res Rev ; 44(2): 539-567, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37661373

ABSTRACT

Over the past decade, colorectal cancer has reported a higher incidence in younger adults and a lower mortality rate. Recently, the influence of the intestinal flora in the initiation, progression, and treatment of colorectal cancer has been extensively studied, as well as their positive therapeutic impact on inflammation and the cancer microenvironment. Historically, traditional Chinese medicine (TCM) has been widely used in the treatment of colorectal cancer via promoted cancer cell apoptosis, inhibited cancer metastasis, and reduced drug resistance and side effects. The present research is more on the effect of either herbal medicine or intestinal flora on colorectal cancer. The interactions between TCM and intestinal flora are bidirectional and the combined impacts of TCM and gut microbiota in the treatment of colon cancer should not be neglected. Therefore, this review discusses the role of intestinal bacteria in the progression and treatment of colorectal cancer by inhibiting carcinogenesis, participating in therapy, and assisting in healing. Then the complex anticolon cancer effects of different kinds of TCM monomers, TCM drug pairs, and traditional Chinese prescriptions embodied in apoptosis, metastasis, immune suppression, and drug resistance are summarized separately. In addition, the interaction between TCM and intestinal flora and the combined effect on cancer treatment were analyzed. This review provides a mechanistic reference for the application of TCM and intestinal flora in the clinical treatment of colorectal cancer and paves the way for the combined development and application of microbiome and TCM.


Subject(s)
Colorectal Neoplasms , Drugs, Chinese Herbal , Gastrointestinal Microbiome , Plants, Medicinal , Adult , Humans , Medicine, Chinese Traditional , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Tumor Microenvironment
3.
Int J Biol Sci ; 17(10): 2476-2486, 2021.
Article in English | MEDLINE | ID: mdl-34326688

ABSTRACT

Extracellular vesicles (EVs), are membrane-bound vesicles that have many advantages over traditional nanocarriers for drug and gene delivery. Evidence from recent studies indicate that EVs have therapeutic capability with chemical or biological modification. Tumor-derived exosomes (TEXs) were used as a new type of antigens or tumor vaccines in anti-tumor immunotherapy. With superior characteristics, modified EVs were applied to loaded and delivered synthetic drugs, silencing RNA, and microRNA for treatment. Different surface functionalization strategies have been proposed to improve the therapeutic functions of EVs. Appropriately modified EVs for disease intervention provide new avenues for effective clinical treatment strategies. Therefore, this review aimed at elucidating the therapeutic functions of EVs to generate new ideas for treatment and to unlock their hidden potential in translational medicine.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Delivery Systems , Exosomes/chemistry , Extracellular Vesicles/chemistry , Neoplasms/therapy , Antineoplastic Agents/chemistry , Cancer Vaccines/chemistry , Cancer Vaccines/therapeutic use , Genetic Therapy/methods , Humans , Translational Science, Biomedical
4.
Food Chem ; 281: 41-48, 2019 May 30.
Article in English | MEDLINE | ID: mdl-30658763

ABSTRACT

To determine organic mercury (Hg) species that could not be detected by ultraviolet (UV), a highly automated on-line complexation method was established, which combined with normal stacking by capillary electrophoresis-diode array detector. The approach was based on the fact that the compounds and complex reagent interacted to form hydrophilic chelates under the effect of the separation voltage, which was effectively separated and detected by UV. Key parameters, such as the type and concentration of complex reagent, separation voltage and so on were systematically investigated. Under the optimized conditions, the precision and repeatability were in the range of 0.16-3.31% and 0.17-1.21%, respectively. Furthermore, PhHg, EtHg and MeHg were effectively separated and determined in fresh fish (Silver carp) muscle and kelp (Kombu) with the recoveries of 84.63-111.39% and 75.68-114.76%, respectively. The proposed method had the advantages of easy-operating, cost-efficient, stable and reliable compared to off-line complexation method.


Subject(s)
Electrophoresis, Capillary , Mercury/analysis , Seafood/analysis , Animals , Carps , Food Analysis , Food Contamination , Hydrogen-Ion Concentration , Kelp/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...