Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 383(6680): 275-279, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38236981

ABSTRACT

Some compact objects observed in gravitational wave events have masses in the gap between known neutron stars (NSs) and black holes (BHs). The nature of these mass gap objects is unknown, as is the formation of their host binary systems. We report pulsar timing observations made with the Karoo Array Telescope (MeerKAT) of PSR J0514-4002E, an eccentric binary millisecond pulsar in the globular cluster NGC 1851. We found a total binary mass of 3.887 ± 0.004 solar masses (M⊙), and multiwavelength observations show that the pulsar's binary companion is also a compact object. The companion's mass (2.09 to 2.71 M⊙, 95% confidence interval) is in the mass gap, indicating either a very massive NS or a low-mass BH. We propose that the companion formed in a merger between two earlier NSs.

2.
Nature ; 619(7970): 487-490, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37468588

ABSTRACT

Several long-period radio transients have recently been discovered, with strongly polarized coherent radio pulses appearing on timescales between tens to thousands of seconds1,2. In some cases, the radio pulses have been interpreted as coming from rotating neutron stars with extremely strong magnetic fields, known as magnetars; the origin of other, occasionally periodic and less-well-sampled radio transients is still debated3. Coherent periodic radio emission is usually explained by rotating dipolar magnetic fields and pair-production mechanisms, but such models do not easily predict radio emission from such slowly rotating neutron stars and maintain it for extended times. On the other hand, highly magnetic isolated white dwarfs would be expected to have long spin periodicities, but periodic coherent radio emission has not yet been directly detected from these sources. Here we report observations of a long-period (21 min) radio transient, which we have labelled GPM J1839-10. The pulses vary in brightness by two orders of magnitude, last between 30 and 300 s and have quasiperiodic substructure. The observations prompted a search of radio archives and we found that the source has been repeating since at least 1988. The archival data enabled constraint of the period derivative to <3.6 × 10-13 s s-1, which is at the very limit of any classical theoretical model that predicts dipolar radio emission from an isolated neutron star.

4.
Nature ; 609(7928): 685-688, 2022 09.
Article in English | MEDLINE | ID: mdl-36131036

ABSTRACT

Fast radio bursts (FRBs) are highly dispersed, millisecond-duration radio bursts1-3. Recent observations of a Galactic FRB4-8 suggest that at least some FRBs originate from magnetars, but the origin of cosmological FRBs is still not settled. Here we report the detection of 1,863 bursts in 82 h over 54 days from the repeating source FRB 20201124A (ref. 9). These observations show irregular short-time variation of the Faraday rotation measure (RM), which scrutinizes the density-weighted line-of-sight magnetic field strength, of individual bursts during the first 36 days, followed by a constant RM. We detected circular polarization in more than half of the burst sample, including one burst reaching a high fractional circular polarization of 75%. Oscillations in fractional linear and circular polarizations, as well as polarization angle as a function of wavelength, were detected. All of these features provide evidence for a complicated, dynamically evolving, magnetized immediate environment within about an astronomical unit (AU; Earth-Sun distance) of the source. Our optical observations of its Milky-Way-sized, metal-rich host galaxy10-12 show a barred spiral, with the FRB source residing in a low-stellar-density interarm region at an intermediate galactocentric distance. This environment is inconsistent with a young magnetar engine formed during an extreme explosion of a massive star that resulted in a long gamma-ray burst or superluminous supernova.

5.
Nature ; 587(7832): 63-65, 2020 11.
Article in English | MEDLINE | ID: mdl-33149293

ABSTRACT

Fast radio bursts (FRBs) are millisecond-duration radio transients of unknown physical origin observed at extragalactic distances1-3. It has long been speculated that magnetars are the engine powering repeating bursts from FRB sources4-13, but no convincing evidence has been collected so far14. Recently, the Galactic magnetar SRG 1935+2154 entered an active phase by emitting intense soft γ-ray bursts15. One FRB-like event with two peaks (FRB 200428) and a luminosity slightly lower than the faintest extragalactic FRBs was detected from the source, in association with a soft γ-ray/hard-X-ray flare18-21. Here we report an eight-hour targeted radio observational campaign comprising four sessions and assisted by multi-wavelength (optical and hard-X-ray) data. During the third session, 29 soft-γ-ray repeater (SGR) bursts were detected in γ-ray energies. Throughout the observing period, we detected no single dispersed pulsed emission coincident with the arrivals of SGR bursts, but unfortunately we were not observing when the FRB was detected. The non-detection places a fluence upper limit that is eight orders of magnitude lower than the fluence of FRB 200428. Our results suggest that FRB-SGR burst associations are rare. FRBs may be highly relativistic and geometrically beamed, or FRB-like events associated with SGR bursts may have narrow spectra and characteristic frequencies outside the observed band. It is also possible that the physical conditions required to achieve coherent radiation in SGR bursts are difficult to satisfy, and that only under extreme conditions could an FRB be associated with an SGR burst.

6.
Nature ; 586(7831): 693-696, 2020 10.
Article in English | MEDLINE | ID: mdl-33116290

ABSTRACT

Fast radio bursts (FRBs) are millisecond-duration radio transients1,2 of unknown origin. Two possible mechanisms that could generate extremely coherent emission from FRBs invoke neutron star magnetospheres3-5 or relativistic shocks far from the central energy source6-8. Detailed polarization observations may help us to understand the emission mechanism. However, the available FRB polarization data have been perplexing, because they show a host of polarimetric properties, including either a constant polarization angle during each burst for some repeaters9,10 or variable polarization angles in some other apparently one-off events11,12. Here we report observations of 15 bursts from FRB 180301 and find various polarization angle swings in seven of them. The diversity of the polarization angle features of these bursts is consistent with a magnetospheric origin of the radio emission, and disfavours the radiation models invoking relativistic shocks.

SELECTION OF CITATIONS
SEARCH DETAIL
...