Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Physiol (1985) ; 136(6): 1526-1545, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38695358

ABSTRACT

Intrauterine growth restriction (IUGR) is a common complication of pregnancy. We previously demonstrated that IUGR is associated with an impaired nitric oxide (NO)-induced relaxation in the human umbilical vein (HUV) of growth-restricted females compared to appropriate for gestational age (AGA) newborns. We found that phosphodiesterase (PDE) inhibition improved NO-induced relaxation in HUV, suggesting that PDEs could represent promising targets for therapeutic intervention. This study aimed to investigate the effects of PDE inhibition on human umbilical arteries (HUAs) compared to HUV. Umbilical vessels were collected in IUGR and AGA term newborns. NO-induced relaxation was studied using isolated vessel tension experiments in the presence or absence of the nonspecific PDE inhibitor 3-isobutyl-1-methylxanthine (IBMX). PDE1B, PDE1C, PDE3A, PDE4B, and PDE5A were investigated by Western blot. NO-induced vasodilation was similar between IUGR and AGA HUAs. In HUAs precontracted with serotonin, IBMX enhanced NO-induced relaxation only in IUGR females, whereas in HUV IBMX increased NO-induced relaxation in all groups except IUGR males. In umbilical vessels preconstricted with the thromboxane A2 analog U46619, IBMX improved NO-induced relaxation in all groups to a greater extent in HUV than HUAs. However, the PDE protein content was higher in HUAs than HUV in all study groups. Therefore, the effects of PDE inhibition depend on the presence of IUGR, fetal sex, vessel type, and vasoconstrictors implicated. Despite a higher PDE protein content, HUAs are less sensitive to IBMX than HUV, which could lead to adverse effects of PDE inhibition in vivo by impairment of the fetoplacental hemodynamics.NEW & NOTEWORTHY The effects of phosphodiesterase inhibition on the umbilical circulation depend on the presence of intrauterine growth restriction, the fetal sex, vessel type, and vasoconstrictors implicated. The human umbilical vascular tone regulation is complex and depends on the amount and activity of specific proteins but also probably on the subcellular organization mediating protein interactions. Therefore, therapeutic interventions using phosphodiesterase inhibitors to improve the placental-fetal circulation should consider fetal sex and both umbilical vein and artery reactivity.


Subject(s)
Fetal Growth Retardation , Nitric Oxide , Phosphodiesterase Inhibitors , Umbilical Arteries , Umbilical Veins , Vasodilation , Humans , Female , Umbilical Arteries/drug effects , Male , Vasodilation/drug effects , Vasodilation/physiology , Umbilical Veins/drug effects , Phosphodiesterase Inhibitors/pharmacology , Fetal Growth Retardation/drug therapy , Fetal Growth Retardation/physiopathology , Nitric Oxide/metabolism , Pregnancy , Infant, Newborn , Cyclic Nucleotide Phosphodiesterases, Type 5/metabolism , 1-Methyl-3-isobutylxanthine/pharmacology , Sex Factors , Phosphoric Diester Hydrolases/metabolism
2.
Int J Mol Sci ; 22(18)2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34576323

ABSTRACT

Infants born after intrauterine growth restriction (IUGR) are at risk of developing arterial hypertension at adulthood. The endothelium plays a major role in the pathogenesis of hypertension. Endothelial colony-forming cells (ECFCs), critical circulating components of the endothelium, are involved in vasculo-and angiogenesis and in endothelium repair. We previously described impaired functionality of ECFCs in cord blood of low-birth-weight newborns. However, whether early ECFC alterations persist thereafter and could be associated with hypertension in individuals born after IUGR remains unknown. A rat model of IUGR was induced by a maternal low-protein diet during gestation versus a control (CTRL) diet. In six-month-old offspring, only IUGR males have increased systolic blood pressure (tail-cuff plethysmography) and microvascular rarefaction (immunofluorescence). ECFCs isolated from bone marrow of IUGR versus CTRL males displayed a decreased proportion of CD31+ versus CD146+ staining on CD45- cells, CD34 expression (flow cytometry, immunofluorescence), reduced proliferation (BrdU incorporation), and an impaired capacity to form capillary-like structures (Matrigel test), associated with an impaired angiogenic profile (immunofluorescence). These dysfunctions were associated with oxidative stress (increased superoxide anion levels (fluorescent dye), decreased superoxide dismutase protein expression, increased DNA damage (immunofluorescence), and stress-induced premature senescence (SIPS; increased beta-galactosidase activity, increased p16INK4a, and decreased sirtuin-1 protein expression). This study demonstrated an impaired functionality of ECFCs at adulthood associated with arterial hypertension in individuals born after IUGR.


Subject(s)
Fetal Growth Retardation/physiopathology , Animals , Blood Pressure/physiology , Cell Proliferation/physiology , Cellular Senescence/physiology , Female , Male , Neovascularization, Pathologic/physiopathology , Oxidative Stress/physiology , Rats
3.
Acta Physiol (Oxf) ; 233(2): e13700, 2021 10.
Article in English | MEDLINE | ID: mdl-34089562

ABSTRACT

AIM: The optimal exercise intensity to improve endothelial function remains unclear, as well as whether the addition of hypoxia could potentiate this function. Therefore, the aim of this study was to compare the effects of different exercise intensities in normoxia and hypoxia on vascular reactivity and nitric oxide (NO) bioavailability in mice. METHODS: C57BL/6 mice underwent treadmill running three times per week, for 4 weeks at either low, maximal or supramaximal intensity in normoxia or hypoxia (inspire oxygen fraction = 0.13). Vascular reactivity and expression of genes and proteins involved in NO production/bioavailability were assessed in aorta using isolated vessel tension experiments, RT-qPCR and western blot, respectively. Circulating NO metabolites and pro-/antioxidant markers were measured. RESULTS: Hypoxic exercise improved both acetylcholine-induced vasorelaxation and phenylephrine-induced vasoconstriction compared to normoxic exercise, independently of intensity. In hypoxia, a higher acetylcholine-induced vasorelaxation was observed with high intensities (supramaximal and maximal) compared to low intensity. Exercise protocols modulated endothelial nitric oxide synthase (eNOS) and α1-adrenergic receptor (α1 -AR) mRNA level, but not superoxide dismutase 3 (SOD3) and p47phox. No significant differences were observed for protein expression of α1 -AR, total eNOS, phosphorylated eNOS, SOD isoforms and p47phox. However, plasma SOD and catalase activities were significantly increased in hypoxic supramaximal compared to hypoxic low intensity, while concentration of nitrotyrosine significantly decreased. The latter was also observed in hypoxic maximal and supramaximal compared to the same intensities in normoxia. CONCLUSION: Hypoxic high-intensity exercise increases NO bioavailability and improves vascular function, opening promising clinical perspectives for cardiovascular disease prevention.


Subject(s)
Nitric Oxide Synthase Type III , Nitric Oxide , Animals , Biological Availability , Endothelium, Vascular/metabolism , Hypoxia/metabolism , Mice , Mice, Inbred C57BL , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/metabolism
4.
Placenta ; 93: 83-93, 2020 04.
Article in English | MEDLINE | ID: mdl-32250743

ABSTRACT

INTRODUCTION: Intrauterine growth restriction (IUGR) is a leading cause of perinatal mortality and morbidity, and is linked to an increased risk to develop chronic diseases in adulthood. We previously demonstrated that IUGR is associated, in female neonates, with a decreased nitric oxide (NO)-induced relaxation of the umbilical vein (UV). The present study aimed to investigate the contribution of the smooth muscle components of the NO/cyclic GMP (cGMP) pathway to this alteration. METHODS: UVs were collected in growth-restricted or appropriate for gestational age (AGA) human term newborns. Soluble guanylyl cyclase (sGC) and cGMP-dependent protein kinase (PKG) were studied by Western blot, cGMP production by ELISA and cyclic nucleotide phosphodiesterases (PDEs) activity using a colorimetric assay. Contribution of PDEs was evaluated using the non-specific PDEs inhibitor 3-isobutyl-1-methylxanthine (IBMX) in isolated vessel tension studies. RESULTS: NO-induced relaxation was reduced in IUGR females despite increased sGC protein and activity, and some increase in PKG protein compared to AGA. In males, no significant difference was observed between both groups. In the presence of IBMX, NO-stimulated cGMP production was significantly higher in IUGR than AGA females. Pre-incubation with IBMX significantly improved NO-induced relaxation in all groups and abolished the difference between IUGR and AGA females. CONCLUSION: IUGR is associated with sex-specific alterations in the UV's smooth muscle. The impaired NO-induced relaxation observed in growth-restricted females is linked to an imbalance in the NO/cGMP pathway. The beneficial effects of IBMX suggest that PDEs are implicated in such alteration and they could represent promising targets for therapeutic intervention.


Subject(s)
Cyclic GMP/metabolism , Fetal Growth Retardation/metabolism , Nitric Oxide/metabolism , Sex Characteristics , Umbilical Veins/metabolism , Adult , Case-Control Studies , Cyclic GMP-Dependent Protein Kinases/metabolism , Female , Fetal Growth Retardation/pathology , Fetus/physiology , Humans , Infant, Newborn , Male , Nitric Oxide/pharmacology , Pregnancy , Signal Transduction/physiology , Soluble Guanylyl Cyclase/metabolism , Umbilical Veins/pathology , Vasodilation/drug effects , Vasodilation/physiology
5.
J Vis Exp ; (145)2019 03 15.
Article in English | MEDLINE | ID: mdl-30933059

ABSTRACT

Exercise training is an important strategy for maintaining health and preventing many chronic diseases. It is the first line of treatment recommended by international guidelines for patients suffering from cardiovascular diseases, more specifically, lower extremity artery diseases, where the patients' walking capacity is considerably altered, affecting their quality of life. Traditionally, both low continuous exercise and interval training have been used. Recently, supramaximal training has also been shown to improve athletes' performances via vascular adaptations, amongst other mechanisms. The combination of this type of training with hypoxia could bring an additional and/or synergic effect, which could be of interest for certain pathologies. Here, we describe how to perform supramaximal intensity training sessions in hypoxia on healthy mice at 150% of their maximal speed, using a motorized treadmill and a hypoxic box. We also show how to dissect the mouse in order to retrieve organs of interest, particularly the pulmonary artery, the abdominal aorta, and the iliac artery. Finally, we show how to perform ex vivo vascular function assessment on the retrieved vessels, using isometric tension studies.


Subject(s)
Blood Vessels/physiopathology , Hypoxia/physiopathology , Physical Conditioning, Animal , Acetylcholine/pharmacology , Animals , Aorta/drug effects , Aorta/physiopathology , Blood Vessels/drug effects , Body Weight , Iliac Artery/drug effects , Iliac Artery/physiopathology , Male , Mice, Inbred C57BL , Phenylephrine/pharmacology
6.
Biomed Res Int ; 2014: 949361, 2014.
Article in English | MEDLINE | ID: mdl-25110713

ABSTRACT

Adverse events in utero are associated with the occurrence of chronic diseases in adulthood. We previously demonstrated in mice that perinatal hypoxia resulted in altered pulmonary circulation in adulthood, with a decreased endothelium-dependent relaxation of pulmonary arteries, associated with long-term alterations in the nitric oxide (NO)/cyclic GMP pathway. The present study investigated whether inhaled NO (iNO) administered simultaneously to perinatal hypoxia could have potential beneficial effects on the adult pulmonary circulation. Indeed, iNO is the therapy of choice in humans presenting neonatal pulmonary hypertension. Long-term effects of neonatal iNO therapy on adult pulmonary circulation have not yet been investigated. Pregnant mice were placed in hypoxia (13% O2) with simultaneous administration of iNO 5 days before delivery until 5 days after birth. Pups were then raised in normoxia until adulthood. Perinatal iNO administration completely restored acetylcholine-induced relaxation, as well as endothelial nitric oxide synthase protein content, in isolated pulmonary arteries of adult mice born in hypoxia. Right ventricular hypertrophy observed in old mice born in hypoxia compared to controls was also prevented by perinatal iNO treatment. Therefore, simultaneous administration of iNO during perinatal hypoxic exposure seems able to prevent adverse effects of perinatal hypoxia on the adult pulmonary circulation.


Subject(s)
Hypertrophy, Right Ventricular/drug therapy , Hypoxia/drug therapy , Nitric Oxide/administration & dosage , Pulmonary Circulation , Administration, Inhalation , Adult , Animals , Cyclic GMP/metabolism , Female , Humans , Hypertrophy, Right Ventricular/chemically induced , Hypertrophy, Right Ventricular/pathology , Hypoxia/complications , Hypoxia/pathology , Mice , Nitric Oxide/metabolism , Oxygen/administration & dosage , Oxygen/adverse effects , Pregnancy , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...