Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Aerosp Med Hum Perform ; 92(8): 633-641, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34503616

ABSTRACT

AbstractBACKGROUND: Members of the public will soon be taking commercial suborbital spaceflights with significant Gx (chest-to-back) acceleration potentially reaching up to 6 Gx. Pulmonary physiology is gravity-dependent and is likely to be affected, which may have clinical implications for medically susceptible individuals.METHODS: During 2-min centrifuge exposures ranging up to 6 Gx, 11 healthy subjects were studied using advanced respiratory techniques. These sustained exposures were intended to allow characterization of the underlying pulmonary response and did not replicate actual suborbital G profiles. Regional distribution of ventilation in the lungs was determined using electrical impedance tomography. Neural respiratory drive (from diaphragm electromyography) and work of breathing (from transdiaphragmatic pressures) were obtained via nasoesophageal catheters. Arterial blood gases were measured in a subset of subjects. Measurements were conducted while breathing air and breathing 15 oxygen to simulate anticipated cabin pressurization conditions.RESULTS: Acceleration caused hypoxemia that worsened with increasing magnitude and duration of Gx. Minimum arterial oxygen saturation at 6 Gx was 86 1 breathing air and 79 1 breathing 15 oxygen. With increasing Gx the alveolar-arterial (A-a) oxygen gradient widened progressively and the relative distribution of ventilation reversed from posterior to anterior lung regions with substantial gas-trapping anteriorly. Severe breathlessness accompanied large progressive increases in work of breathing and neural respiratory drive.DISCUSSION: Sustained high-G acceleration at magnitudes relevant to suborbital flight profoundly affects respiratory physiology. These effects may become clinically important in the most medically susceptible passengers, in whom the potential role of centrifuge-based preflight evaluation requires further investigation.Pollock RD, Jolley CJ, Abid N, Couper JH, Estrada-Petrocelli L, Hodkinson PD, Leonhardt S, Mago-Elliott S, Menden T, Rafferty G, Richmond G, Robbins PA, Ritchie GAD, Segal MJ, Stevenson AT, Tank HD, Smith TG. Pulmonary effects of sustained periods of high-G acceleration relevant to suborbital spaceflight. Aerosp Med Hum Perform. 2021; 92(7):633641.


Subject(s)
Aerospace Medicine , Space Flight , Acceleration , Centrifugation , Gravitation , Humans
2.
Physiol Meas ; 42(9)2021 09 27.
Article in English | MEDLINE | ID: mdl-34375953

ABSTRACT

Objective. During launch and atmospheric re-entry in suborbital space flights, astronauts are exposed to high G-acceleration. These acceleration levels influence gas exchange inside the lung and can potentially lead to hypoxaemia. The distribution of air inside the lung can be monitored by electrical impedance tomography. This imaging technique might reveal how high gravitational forces affect the dynamic behavior of ventilation and impair gas exchange resulting in hypoxaemia.Approach. We performed a trial in a long-arm centrifuge with ten participants lying supine while being exposed to +2, +4 and +6 Gx(chest-to-back acceleration) to study the magnitude of accelerations experienced during suborbital spaceflight.Main results. First, the tomographic images revealed that the dorsal region of the lung emptied faster than the ventral region. Second, the ventilated area shifted from dorsal to ventral. Consequently, alveolar pressure in the dorsal area reached the pressure of the upper airways before the ventral area emptied completely. Finally, the upper airways collapsed and the end-expiratory volume increased. This resulted in ventral gas trapping with restricted gas exchange.Significance. At +4 Gx, changes in ventilation distribution varied considerably between subjects, potentially due to variation in individual physical conditions. However, at +6 Gxall participants were affected similarly and the influence of high gravitational conditions was pronounced.


Subject(s)
Lung , Tomography , Acceleration , Electric Impedance , Humans , Lung/diagnostic imaging , Tomography, X-Ray Computed
3.
Physiol Meas ; 42(6)2021 06 29.
Article in English | MEDLINE | ID: mdl-34020443

ABSTRACT

Objective. Multi-channel bioimpedance spectroscopy (BIS) systems typically sample each channel's impedance sequentially using multiplexers and a single analog-to-digital converter. These systems may lose their real-time capability with an increasing number of channels, especially for low excitation frequencies. We propose a new method, called orthogonal baseband shifting (OBS), for high-speed parallel BIS data acquisition at multiple excitation frequencies with low hardware and computational effort.Approach. Similar to orthogonal frequency-division multiplexing, used for digital data transmission, OBS systems use channel-specific orthogonal carrier frequencies to modulate the voltage response of the tissue. Given a suitable choice of carrier frequencies, the modulated signals of all channels sum up without loss of information and cross-talk. The fast Fourier transform (FFT) of the summed signal reveals a spectrum of non-overlapping, interleaved BIS data from which the corresponding BIS data of each channel can be calculated.Main results. In simulations, the system design requires a minimum signal-to-noise ratio of 30 dB to achieve amplitude errors below 1% and phase errors below 0.8°. The hardware realization, called 'AixBIS', has been evaluated for impedance measurements between 0.1 and 10 Ω with multi-frequency excitations between 45 and 180 kHz. The impedance values acquired had an averaged precision of 3.67 mΩ, which is only 0.65‰ in relation to the measured impedance. The phase had a mean precision of 0.46°. Moreover,in vitromeasurements achieved 140 full spectrum acquisitions per second. The impedance change measured in a silicone heart phantom showed a high correlation of 0.83 with the ventricles volume change (flow).Significance. The proposed method enables very fast impedance acquisition of all channels. A complete measurement is performed in the time of a single FFT acquisition, which is equal to the resolution bandwidth of the FFT. In addition, portable and low-power multi-channel BIS devices profit from highly reduced hardware effort. The outstanding performance of OBS measurements with the AixBIS system have the potential forin vivoBIS measurements in real-time.


Subject(s)
Fourier Analysis , Electric Impedance , Phantoms, Imaging , Signal-To-Noise Ratio , Spectrum Analysis
4.
J Electr Bioimpedance ; 12(1): 135-146, 2021 Jan.
Article in English | MEDLINE | ID: mdl-35069949

ABSTRACT

Bioimpedance measurements use current or voltage sources to inject an excitation signal into the body. These sources require a high bandwidth, typically from 1 kHz to 1 MHz. Besides a low common mode, current limitation is necessary for patient safety. In this paper, we compare a symmetric enhanced Howland current source (EHCS) and a symmetric voltage source (VS) based on a non-inverting amplifier between 1 kHz and 1 MHz. A common mode reduction circuit has been implemented in both sources. The bandwidth of each source was optimized in simulations and achieved a stable output impedance over the whole frequency range. In laboratory measurements, the output impedance of the EHCS had its -3 dB point at 400 kHz. In contrast, the VS reached the +3 dB point at 600 kHz. On average over the observed frequency range, the active common mode compensation achieved a common mode rejection of -57.7 dB and -71.8 dB for the EHCS and VS, respectively. Our modifications to classical EHCS and VS circuits achieved a low common mode signal between 1 kHz and 1 MHz without the addition of complex circuitry, like general impedance converters. As a conclusion we found VSs to be superior to EHCSs for bioimpedance spectroscopy due to the higher bandwidth performance. However, this only applies if the injected current of the VS can be measured.

5.
Physiol Meas ; 40(3): 034008, 2019 04 03.
Article in English | MEDLINE | ID: mdl-30818291

ABSTRACT

OBJECTIVE: Tissues in the body differ by their frequency-dependent conductivity. Frequency-differential electrical impedance tomography (fdEIT) is a promising technique to reconstruct the distribution of tissue inside the body by injecting current at two frequencies and measuring the resulting surface-potential. APPROACH: The Gauss-Newton method is one way to map the surface measurements to a conductivity image. Usually, the minimization function contains only weighted differential measurement data and a regularization. This traditional method is extended by absolute measurement data to improve fdEIT reconstruction results. The key challenge of unknown torso geometries and electrode displacement has been addressed for the reconstruction of different lung pathologies. MAIN RESULTS: The frequency-dependent conductivity of the background was reconstructed precisely and a contrast between organs was achieved. The algorithm shows good performance compared to GREIT and the traditional Gauss-Newton method with respect to the figures of merit of GREIT. SIGNIFICANCE: The reconstruction is robust in the presence of noise. One application of the algorithm might be the detection and monitoring of lung diseases like edema or atelectasis.


Subject(s)
Algorithms , Image Processing, Computer-Assisted/methods , Tomography , Electric Impedance , Finite Element Analysis , Humans , Lung Diseases/diagnostic imaging , Lung Diseases/pathology , Signal-To-Noise Ratio
6.
J Electr Bioimpedance ; 9(1): 84-95, 2018 Jan.
Article in English | MEDLINE | ID: mdl-33584924

ABSTRACT

Lung pathologies such as edema, atelectasis or pneumonia are potentially life threatening conditions. Especially in critically ill and mechanically ventilated patients, an early diagnosis and treatment is crucial to prevent an Acute Respiratory Distress Syndrome [1]. Thus, continuous monitoring tool for the lung condition available at the bedside would be highly appreciated. One concept for this is Electrical Impedance Tomography (EIT). In EIT, an electrode belt of typically 16 or 32 electrodes is attached at the body surface and multiple impedance measurements are performed. From this, the conductivity change inside the body is reconstructed in a two-dimensional image. In various studies, EIT proved to be a useful tool for quantifying recruitment maneuvers, the assessment of the ventilation homogeneity, the detection of lung edema or perfusion monitoring [2, 3, 4, 5]. Nevertheless, the main problem of EIT is the low spatial resolution (compared to CT) and the limitation to two dimensional images. In this paper, we try to address the latter issue: Instead of projecting conductivity changes onto a two-dimensional image, we adjust electrode positions to focus single tetrapolar measurements to specific, three-dimensional regions of interest. In earlier work, we defined guidelines to achieve this focusing [6, 7]. In this paper, we demonstrate in simulations and in a water tank experiment that applying these guidelines can help to detect pathologies in specific lung regions.

7.
J Med Eng Technol ; 39(2): 131-7, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25559781

ABSTRACT

Cardiovascular diseases as well as pulmonary oedema can be early diagnosed using vital signs and thoracic bio-impedance. By recording the electrocardiogram (ECG) and the impedance cardiogram (ICG), vital parameters are captured continuously. The aim of this study is the continuous monitoring of ECG and multi-frequency ICG by a mobile system. A mobile measuring system, based on 'low-power' ECG, ICG and an included radio transmission is described. Due to the high component integration, a board size of only 6.5 cm×5 cm could be realized. The measured data can be transmitted via Bluetooth and visualized on a portable monitor. By using energy-efficient hardware, the system can operate for up to 18 hs with a 3 V battery, continuously sending data via Bluetooth. Longer operating times can be realized by decreased transfer rates. The relative error of the impedance measurement was less than 1%. The ECG and ICG measurements allow an approximate calculation of the heart stroke volume. The ECG and the measured impedance showed a high correlation to commercial devices (r=0.83, p<0.05). In addition to commercial devices, the developed system allows a multi-frequency measurement of the thoracic impedance between 5-150 kHz.


Subject(s)
Cardiography, Impedance/instrumentation , Electrocardiography/instrumentation , Monitoring, Ambulatory/instrumentation , Cardiography, Impedance/methods , Clothing , Electrocardiography/methods , Electrodes , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...