Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Mol Psychiatry ; 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704507

ABSTRACT

Schizophrenia affects approximately 1% of the world population. Genetics, epigenetics, and environmental factors are known to play a role in this psychiatric disorder. While there is a high concordance in monozygotic twins, about half of twin pairs are discordant for schizophrenia. To address the question of how and when concordance in monozygotic twins occur, we have obtained fibroblasts from two pairs of schizophrenia discordant twins (one sibling with schizophrenia while the second one is unaffected by schizophrenia) and three pairs of healthy twins (both of the siblings are healthy). We have prepared iPSC models for these 3 groups of patients with schizophrenia, unaffected co-twins, and the healthy twins. When the study started the co-twins were considered healthy and unaffected but both the co-twins were later diagnosed with a depressive disorder. The reprogrammed iPSCs were differentiated into hippocampal neurons to measure the neurophysiological abnormalities in the patients. We found that the neurons derived from the schizophrenia patients were less arborized, were hypoexcitable with immature spike features, and exhibited a significant reduction in synaptic activity with dysregulation in synapse-related genes. Interestingly, the neurons derived from the co-twin siblings who did not have schizophrenia formed another distinct group that was different from the neurons in the group of the affected twin siblings but also different from the neurons in the group of the control twins. Importantly, their synaptic activity was not affected. Our measurements that were obtained from schizophrenia patients and their monozygotic twin and compared also to control healthy twins point to hippocampal synaptic deficits as a central mechanism in schizophrenia.

2.
Curr Biol ; 32(22): 4797-4807.e5, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36228612

ABSTRACT

Unique aspects of human behavior are often attributed to differences in the relative size and organization of the human brain: these structural aspects originate during early development. Recent studies indicate that human neurodevelopment is considerably slower than that in other nonhuman primates, a finding that is termed neoteny. One aspect of neoteny is the slow onset of action potentials. However, which molecular mechanisms play a role in this process remain unclear. To examine the evolutionary constraints on the rate of neuronal maturation, we have generated transcriptional data tracking five time points, from the neural progenitor state to 8-week-old neurons, in primates spanning the catarrhine lineage, including Macaca mulatta, Gorilla gorilla, Pan paniscus, Pan troglodytes, and Homo sapiens. Despite finding an overall similarity of many transcriptional signatures, species-specific and clade-specific distinctions were observed. Among the genes that exhibited human-specific regulation, we identified a key pioneer transcription factor, GATA3, that was uniquely upregulated in humans during the neuronal maturation process. We further examined the regulatory nature of GATA3 in human cells and observed that downregulation quickened the speed of developing spontaneous action potentials, thereby modulating the human neotenic phenotype. These results provide evidence for the divergence of gene regulation as a key molecular mechanism underlying human neoteny.


Subject(s)
Hominidae , Transcriptome , Animals , Humans , Primates/genetics , Hominidae/genetics , Gorilla gorilla/genetics , Pan troglodytes/genetics , Pan paniscus , Macaca mulatta
3.
Stem Cell Reports ; 16(4): 825-835, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33667413

ABSTRACT

Bipolar disorder (BD) is characterized by cyclical mood shifts. Studies indicate that BD patients have a peripheral pro-inflammatory state and alterations in glial populations in the brain. We utilized an in vitro model to study inflammation-related phenotypes of astrocytes derived from induced pluripotent stem cells (iPSCs) generated from BD patients and healthy controls. BD astrocytes showed changes in transcriptome and induced a reduction in neuronal activity when co-cultured with neurons. IL-1ß-stimulated BD astrocytes displayed a unique inflammatory gene expression signature and increased secretion of IL-6. Conditioned medium from stimulated BD astrocytes reduced neuronal activity, and this effect was partially blocked by IL-6 inactivating antibody. Our results suggest that BD astrocytes are functionally less supportive of neuronal excitability and this effect is partially mediated by IL-6. We confirmed higher IL-6 in blood in a distinct cohort of BD patients, highlighting the potential role of astrocyte-mediated inflammatory signaling in BD neuropathology.


Subject(s)
Astrocytes/pathology , Bipolar Disorder/pathology , Inflammation/pathology , Neurons/pathology , Coculture Techniques , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Interleukin-1beta/pharmacology , Interleukin-6/metabolism , Neuroglia/drug effects , Neuroglia/pathology , Neurons/drug effects , Neurons/metabolism
4.
Mol Psychiatry ; 26(6): 2440-2456, 2021 06.
Article in English | MEDLINE | ID: mdl-33398088

ABSTRACT

Bipolar disorder (BD) is a psychiatric condition characterized by depressive and manic episodes that affect 2% of the world population. The first-line long-term treatment for mood stabilization is lithium (Li). Induced pluripotent stem cell modeling of BD using hippocampal dentate gyrus-like neurons derived from Li-responsive (LR) and Li-non-responsive (NR) patients previously showed neuronal hyperexcitability. Li treatment reversed hyperexcitability only on the LR neurons. In this study we searched for specific targets of Li resistance in NR neurons and found that the activity of Wnt/ß-catenin signaling pathway was severely affected, with a significant decrease in expression of LEF1. Li targets the Wnt/ß-catenin signaling pathway by inhibiting GSK-3ß and releasing ß-catenin that forms a nuclear complex with TCF/LEF1, activating the Wnt/ß-catenin transcription program. Therefore, we propose that downregulation of LEF1 may account for Li resistance in NR neurons. Our results show that valproic acid (VPA), a drug used to treat NR patients that also acts downstream of GSK-3ß, upregulated LEF1 and Wnt/ß-catenin gene targets, increased transcriptional activity of complex ß-catenin/TCF/LEF1, and reduced excitability in NR neurons. In addition, decreasing LEF1 expression in control neurons using shLEF1 caused hyperexcitability, confirming that the impact of VPA on excitability in NR neurons was connected to changes in LEF1 and in the Wnt/ß-catenin pathway. Our results suggest that LEF1 may be a useful target for the discovery of new drugs for BD treatment.


Subject(s)
Bipolar Disorder , Lithium , Bipolar Disorder/drug therapy , Bipolar Disorder/genetics , Glycogen Synthase Kinase 3 beta/genetics , Humans , Lithium/pharmacology , Lymphoid Enhancer-Binding Factor 1/genetics , Lymphoid Enhancer-Binding Factor 1/metabolism , Neurons/metabolism , Wnt Signaling Pathway , beta Catenin/genetics , beta Catenin/metabolism
5.
Mol Psychiatry ; 26(7): 3558-3571, 2021 07.
Article in English | MEDLINE | ID: mdl-32839513

ABSTRACT

A homozygous mutation in the inositol monophosphatase 1 (IMPA1) gene was recently identified in nine individuals with severe intellectual disability (ID) and disruptive behavior. These individuals belong to the same family from Northeastern Brazil, which has 28 consanguineous marriages and 59 genotyped family members. IMPA1 is responsible for the generation of free inositol from de novo biosynthesis and recycling from inositol polyphosphates and participates in the phosphatidylinositol signaling pathway. To understand the role of IMPA1 deficiency in ID, we generated induced pluripotent stem cells (iPSCs) from patients and neurotypical controls and differentiated these into hippocampal dentate gyrus-like neurons and astrocytes. IMPA1-deficient neuronal progenitor cells (NPCs) revealed substantial deficits in proliferation and neurogenic potential. At low passage NPCs (P1 to P3), we observed cell cycle arrest, apoptosis, progressive change to a glial morphology and reduction in neuronal differentiation. These observations were validated by rescuing the phenotype with myo-inositol supplemented media during differentiation of patient-derived iPSCs into neurons and by the reduction of neurogenic potential in control NPCs-expressing shIMPA1. Transcriptome analysis showed that NPCs and neurons derived from ID patients have extensive deregulation of gene expression affecting pathways necessary for neurogenesis and upregulation of gliogenic genes. IMPA1 deficiency did not affect cell cycle progression or survival in iPSCs and glial progenitor cells or astrocyte differentiation. Therefore, this study shows that the IMPA1 mutation specifically affects NPC survival and neuronal differentiation.


Subject(s)
Intellectual Disability , Neurogenesis , Phosphoric Monoester Hydrolases , Cell Differentiation/genetics , Humans , Intellectual Disability/genetics , Mutation , Neurogenesis/genetics , Phosphoric Monoester Hydrolases/genetics
6.
Mol Autism ; 11(1): 55, 2020 06 26.
Article in English | MEDLINE | ID: mdl-32591005

ABSTRACT

BACKGROUND: Research evidence accumulated in the past years in both rodent and human models for autism spectrum disorders (ASD) have established insulin-like growth factor 1 (IGF-1) as one of the most promising ASD therapeutic interventions to date. ASD is phenotypically and etiologically heterogeneous, making it challenging to uncover the underlying genetic and cellular pathophysiology of the condition; and to efficiently design drugs with widespread clinical benefits. While IGF-1 effects have been comprehensively studied in the literature, how IGF-1 activity may lead to therapeutic recovery in the ASD context is still largely unknown. METHODS: In this study, we used a previously characterized neuronal population derived from induced pluripotent stem cells (iPSC) from neurotypical controls and idiopathic ASD individuals to study the transcriptional signature of acutely and chronically IGF-1-treated cells. RESULTS: We present a comprehensive list of differentially regulated genes and molecular interactions resulting from IGF-1 exposure in developing neurons from controls and ASD individuals. Our results indicate that IGF-1 treatment has a different impact on neurons from ASD patients compared to controls. Response to IGF-1 treatment in neurons derived from ASD patients was heterogeneous and correlated with IGF-1 receptor expression, indicating that IGF-1 response may have responder and non-responder distinctions across cohorts of ASD patients. Our results suggest that caution should be used when predicting the effect of IGF-1 treatment on ASD patients using neurotypical controls. Instead, IGF-1 response should be studied in the context of ASD patients' neural cells. LIMITATIONS: The limitation of our study is that our cohort of eight sporadic ASD individuals is comorbid with macrocephaly in childhood. Future studies will address weather downstream transcriptional response of IGF-1 is comparable in non-macrocephalic ASD cohorts. CONCLUSIONS: The results presented in this study provide an important resource for researchers in the ASD field and underscore the necessity of using ASD patient lines to explore ASD neuronal-specific responses to drugs such as IGF-1. This study further helps to identify candidate pathways and targets for effective clinical intervention and may help to inform clinical trials in the future.


Subject(s)
Autistic Disorder/genetics , Insulin-Like Growth Factor I/pharmacology , Neurons/metabolism , Neurons/pathology , Transcription, Genetic/drug effects , Gene Expression Profiling , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Neurons/drug effects , Receptor, IGF Type 1/metabolism
7.
Biol Psychiatry ; 88(2): 150-158, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32278494

ABSTRACT

BACKGROUND: We recently reported a hyperexcitability phenotype displayed in dentate gyrus granule neurons derived from patients with bipolar disorder (BD) as well as a hyperexcitability that appeared only in CA3 pyramidal hippocampal neurons that were derived from patients with BD who responded to lithium treatment (lithium responders) and not in CA3 pyramidal hippocampal neurons that were derived from patients with BD who did not respond to lithium (nonresponders). METHODS: Here we used our measurements of currents in neurons derived from 4 control subjects, 3 patients with BD who were lithium responders, and 3 patients with BD who were nonresponders. We changed the conductances of simulated dentate gyrus and CA3 hippocampal neurons according to our measurements to derive a numerical simulation for BD neurons. RESULTS: The computationally simulated BD dentate gyrus neurons had a hyperexcitability phenotype similar to the experimental results. Only the simulated BD CA3 neurons derived from lithium responder patients were hyperexcitable. Interestingly, our computational model captured a physiological instability intrinsic to hippocampal neurons that were derived from nonresponder patients that we also observed when re-examining our experimental results. This instability was caused by a drastic reduction in the sodium current, accompanied by an increase in the amplitude of several potassium currents. These baseline alterations caused nonresponder BD hippocampal neurons to drastically shift their excitability with small changes to their sodium currents, alternating between hyperexcitable and hypoexcitable states. CONCLUSIONS: Our computational model of BD hippocampal neurons that was based on our measurements reproduced the experimental phenotypes of hyperexcitability and physiological instability. We hypothesize that the physiological instability phenotype strongly contributes to affective lability in patients with BD.


Subject(s)
Bipolar Disorder , Lithium , Bipolar Disorder/drug therapy , Dentate Gyrus , Hippocampus , Humans , Neurons , Pyramidal Cells
8.
Biol Psychiatry ; 88(2): 139-149, 2020 07 15.
Article in English | MEDLINE | ID: mdl-31732108

ABSTRACT

BACKGROUND: Approximately 1 in every 50 to 100 people is affected with bipolar disorder (BD), making this disease a major economic burden. The introduction of induced pluripotent stem cell methodology enabled better modeling of this disorder. METHODS: Having previously studied the phenotype of dentate gyrus granule neurons, we turned our attention to studying the phenotype of CA3 hippocampal pyramidal neurons of 6 patients with BD compared with 4 control individuals. We used patch clamp and quantitative polymerase chain reaction to measure electrophysiological features and RNA expression by specific channel genes. RESULTS: We found that BD CA3 neurons were hyperexcitable only when they were derived from patients who responded to lithium; they featured sustained activity with large current injections and a large, fast after-hyperpolarization, similar to what we previously reported in dentate gyrus neurons. The higher amplitudes and faster kinetics of fast potassium currents correlated with this hyperexcitability. Further supporting the involvement of potassium currents, we observed an overexpression of KCNC1 and KCNC2 in hippocampal neurons derived from lithium responders. Applying specific potassium channel blockers diminished the hyperexcitability. Long-term lithium treatment decreased the hyperexcitability observed in the CA3 neurons derived from lithium responders while increasing sodium currents and reducing fast potassium currents. When differentiating this cohort into spinal motor neurons, we did not observe any changes in the excitability of BD motor neurons compared with control motor neurons. CONCLUSIONS: The hyperexcitability of BD neurons is neuronal type specific with the involvement of altered potassium currents that allow for a sustained, continued firing activity.


Subject(s)
Bipolar Disorder , Bipolar Disorder/drug therapy , Dentate Gyrus , Hippocampus , Humans , Neurons , Patch-Clamp Techniques , Pyramidal Cells , Shaw Potassium Channels
9.
Stem Cell Reports ; 13(3): 474-484, 2019 09 10.
Article in English | MEDLINE | ID: mdl-31474529

ABSTRACT

Neuronal activity can be modeled as a nonlinear dynamical system to yield measures of neuronal state and dysfunction. The electrical recordings of stem cell-derived neurons from individuals with autism spectrum disorder (ASD) and controls were analyzed using minimum embedding dimension (MED) analysis to characterize their dynamical complexity. MED analysis revealed a significant reduction in dynamical complexity in ASD neurons during differentiation, which was correlated to bursting and spike interval measures. MED was associated with clinical endpoints, such as nonverbal intelligence, and was correlated with 53 differentially expressed genes, which were overrepresented with ASD risk genes related to neurodevelopment, cell morphology, and cell migration. Spatiotemporal analysis also showed a prenatal temporal enrichment in cortical and deep brain structures. Together, we present dynamical analysis as a paradigm that can be used to distinguish disease-associated cellular electrophysiological and transcriptional signatures, while taking into account patient variability in neuropsychiatric disorders.


Subject(s)
Autism Spectrum Disorder/pathology , Neurons/metabolism , Adolescent , Adult , Autism Spectrum Disorder/metabolism , Brain/pathology , Case-Control Studies , Cell Differentiation , Cell Movement , Child , Electrophysiological Phenomena , Gene Expression Regulation , Humans , Induced Pluripotent Stem Cells/cytology , Middle Aged , Neurons/cytology , Spatio-Temporal Analysis , Young Adult
10.
Stem Cell Reports ; 8(6): 1757-1769, 2017 06 06.
Article in English | MEDLINE | ID: mdl-28591655

ABSTRACT

Astrocyte dysfunction and neuroinflammation are detrimental features in multiple pathologies of the CNS. Therefore, the development of methods that produce functional human astrocytes represents an advance in the study of neurological diseases. Here we report an efficient method for inflammation-responsive astrocyte generation from induced pluripotent stem cells (iPSCs) and embryonic stem cells. This protocol uses an intermediate glial progenitor stage and generates functional astrocytes that show levels of glutamate uptake and calcium activation comparable with those observed in human primary astrocytes. Stimulation of stem cell-derived astrocytes with interleukin-1ß or tumor necrosis factor α elicits a strong and rapid pro-inflammatory response. RNA-sequencing transcriptome profiling confirmed that similar gene expression changes occurred in iPSC-derived and primary astrocytes upon stimulation with interleukin-1ß. This protocol represents an important tool for modeling in-a-dish neurological diseases with an inflammatory component, allowing for the investigation of the role of diseased astrocytes in neuronal degeneration.


Subject(s)
Astrocytes/cytology , Cell Differentiation , Induced Pluripotent Stem Cells/cytology , Stem Cells/cytology , Astrocytes/drug effects , Astrocytes/metabolism , Calcium/metabolism , Cell Differentiation/drug effects , Cells, Cultured , Coculture Techniques , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Glial Fibrillary Acidic Protein/metabolism , Glutamic Acid/metabolism , Humans , Hyaluronan Receptors/metabolism , Induced Pluripotent Stem Cells/metabolism , Interleukin-1beta/pharmacology , Leukemia Inhibitory Factor/pharmacology , Microscopy, Fluorescence , Neurons/cytology , Neurons/metabolism , Principal Component Analysis , RNA/chemistry , RNA/isolation & purification , RNA/metabolism , Sequence Analysis, RNA , Stem Cells/metabolism , Transcriptome , Tumor Necrosis Factor-alpha/pharmacology
11.
Mol Psychiatry ; 22(6): 820-835, 2017 06.
Article in English | MEDLINE | ID: mdl-27378147

ABSTRACT

Autism spectrum disorders (ASD) are common, complex and heterogeneous neurodevelopmental disorders. Cellular and molecular mechanisms responsible for ASD pathogenesis have been proposed based on genetic studies, brain pathology and imaging, but a major impediment to testing ASD hypotheses is the lack of human cell models. Here, we reprogrammed fibroblasts to generate induced pluripotent stem cells, neural progenitor cells (NPCs) and neurons from ASD individuals with early brain overgrowth and non-ASD controls with normal brain size. ASD-derived NPCs display increased cell proliferation because of dysregulation of a ß-catenin/BRN2 transcriptional cascade. ASD-derived neurons display abnormal neurogenesis and reduced synaptogenesis leading to functional defects in neuronal networks. Interestingly, defects in neuronal networks could be rescued by insulin growth factor 1 (IGF-1), a drug that is currently in clinical trials for ASD. This work demonstrates that selection of ASD subjects based on endophenotypes unraveled biologically relevant pathway disruption and revealed a potential cellular mechanism for the therapeutic effect of IGF-1.


Subject(s)
Autistic Disorder/metabolism , Autistic Disorder/pathology , Tissue Culture Techniques/methods , Adolescent , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/physiopathology , Brain/metabolism , Cell Proliferation/genetics , Cells, Cultured , Child , Child, Preschool , Female , Fibroblasts/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Insulin-Like Growth Factor I/metabolism , Insulin-Like Growth Factor I/therapeutic use , Male , Neural Stem Cells/metabolism , Neurogenesis , Neurons/metabolism , Neurons/physiology , beta Catenin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...