Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Sci Health B ; 57(7): 597-607, 2022.
Article in English | MEDLINE | ID: mdl-35726612

ABSTRACT

The root exudation decreases the susceptibility of some species to herbicides, which is still little studied in Digitaria insularis, popularly known as sourgrass, one of the main weeds of annual crops in the world. Thus, we sought to identify whether there is an occurrence of root exudation of glyphosate in D. insularis and the influence of this herbicide on physiological and control parameters of this species when cultivated under different light conditions. The experimental design was 2 x 5, with the first factor represented by environments: full sun and artificial shading. The second factor was represented by doses 0, 370, 740, 1110, and 1480 g ha-1 of glyphosate. The plants grown in shading showed more significant injury in the initial phase. The increase in the glyphosate doses reduced the photochemical efficiency of the photosystem II (ФPSII), electron transport rate (ETR), photosynthetic rate, stomatal conductance, transpiration rate, and water use efficiency of D. insularis regardless of the cultivation environment. The light restriction increased the ФPSII in D. insularis at three days after applying the herbicide (DAH); at 6 DAH, the shaded plants showed a more pronounced reduction in ФPSII. D. insularis did not show root exudation of glyphosate, and shading did not influence this process.


Subject(s)
Herbicides , Digitaria , Glycine/analogs & derivatives , Herbicide Resistance , Herbicides/pharmacology , Weed Control , Glyphosate
2.
J Environ Sci Health B ; 57(1): 39-46, 2022.
Article in English | MEDLINE | ID: mdl-34962432

ABSTRACT

This study evaluated the effect of light availability in the culture environment and the application of a post emergence herbicide, halosulfuron methyl, on the management of Cyperus rotundus. The experiment was arranged in a 2 × 6 factorial design; the first factor was two levels of light availability: photosynthetically active radiation at 1180.4 and 411.6 µmols m-2 s-1, and the second factor was halosulfuron methyl doses from 28.13 to 140.62 g ha-1. Photosynthetic efficiency, biomass allocation, accumulation of starch in tubers, and percentage control of C. rotundus were evaluated from 7 to 28 days after herbicide application. Doses greater than 70.30 g ha-1 of halosulfuron methyl were efficient to control C. rotundus, regardless of light availability. However, C. rotundus was managed faster under full sunlight than under shading. The efficiency of the photosystem, starch accumulation, and biomass formation decreased with increasing doses of halosulfuron methyl. In a shaded environment, a dose of 28.13 g ha-1 was sufficient to reduce 96.74% of the dry mass and 91.33% of the number of C. rotundus tubers. The decrease in light intensity associated with the use of halosulfuron methyl represents a promising practice for the control of C. rotundus.


Subject(s)
Cyperus , Herbicides , Herbicides/pharmacology , Starch , Sulfonylurea Compounds
SELECTION OF CITATIONS
SEARCH DETAIL