Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
N Biotechnol ; 80: 27-36, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38128698

ABSTRACT

'Epivolve' (epitope evolution) is an innovative paratope-evolving technology using a haptenated peptide or protein immunogen as a means of directing the in vivo immune response to specifically targeted sites at a one amino acid residue resolution. Guided by protein structural analysis, Epivolve technology was tested to develop site-directed neutralizing antibodies (nAbs) in a systematic fashion against the SARS-CoV-2 Receptor Binding Domain (RBD). Thirteen solvent-exposed sites covering the ACE2 receptor-binding interface were targeted. Immunogens composed of each targeted site were used to immunize rabbits in separate cohorts. In vivo site-directed immune responses against all 13 targets were demonstrated by B cell secreted IgG and recombinant IgG testing. One site, SL13 (Y505) which mutates from tyrosine to histidine in the SARS-CoV-2 Omicron variant, was chosen as a proof-of-concept (PoC) model for further functional monoclonal antibody development. Epivolve technology demonstrated the capabilities of generating pan-variant antibodies and nAbs against the SARS-CoV-2 primary strain and the Omicron variant.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Animals , Humans , Rabbits , Spike Glycoprotein, Coronavirus , SARS-CoV-2 , Immunoglobulin G
2.
Front Immunol ; 14: 1222267, 2023.
Article in English | MEDLINE | ID: mdl-37675118

ABSTRACT

Introduction: Syphilis, a sexually transmitted infection caused by the spirochete Treponema pallidum (Tp), is resurging globally. Tp's repertoire of outer membrane proteins (OMPs) includes BamA (ß-barrel assembly machinery subunit A/TP0326), a bipartite protein consisting of a 16-stranded ß-barrel with nine extracellular loops (ECLs) and five periplasmic POTRA (polypeptide transport-associated) domains. BamA ECL4 antisera promotes internalization of Tp by rabbit peritoneal macrophages. Methods: Three overlapping BamA ECL4 peptides and a two-stage, phage display strategy, termed "Epivolve" (for epitope evolution) were employed to generate single-chain variable fragments (scFvs). Additionally, antisera generated by immunizing mice and rabbits with BamA ECL4 displayed by a Pyrococcus furiosus thioredoxin scaffold (PfTrxBamA/ECL4). MAbs and antisera reactivities were evaluated by immunoblotting and ELISA. A comparison of murine and rabbit opsonophagocytosis assays was conducted to evaluate the functional ability of the Abs (e.g., opsonization) and validate the mouse assay. Sera from Tp-infected mice (MSS) and rabbits (IRS) were evaluated for ECL4-specific Abs using PfTrxBamA/ECL4 and overlapping ECL4 peptides in immunoblotting and ELISA assays. Results: Each of the five mAbs demonstrated reactivity by immunoblotting and ELISA to nanogram amounts of PfTrxBamA/ECL4. One mAb, containing a unique amino acid sequence in both the light and heavy chains, showed activity in the murine opsonophagocytosis assay. Mice and rabbits hyperimmunized with PfTrxBamA/ECL4 produced opsonic antisera that strongly recognized the ECL presented in a heterologous scaffold and overlapping ECL4 peptides, including S2. In contrast, Abs generated during Tp infection of mice and rabbits poorly recognized the peptides, indicating that S2 contains a subdominant epitope. Discussion: Epivolve produced mAbs target subdominant opsonic epitopes in BamA ECL4, a top syphilis vaccine candidate. The murine opsonophagocytosis assay can serve as an alternative model to investigate the opsonic potential of vaccinogens. Detailed characterization of BamA ECL4-specific Abs provided a means to dissect Ab responses elicited by Tp infection.


Subject(s)
Bacteriophages , Syphilis , Mice , Animals , Rabbits , Treponema pallidum , Antibodies, Monoclonal , Immune Sera , Epitopes
3.
Methods Mol Biol ; 2702: 451-465, 2023.
Article in English | MEDLINE | ID: mdl-37679635

ABSTRACT

To develop reproducible results, it is critical that all reagents used in an experiment be validated in an alternative or independent method. We present two such independent methods for determining the specificity of antibodies: (1) "MILKSHAKE," which can be used to validate the liability and specificity of antibodies directed against post-translationally-modified epitopes, and (2) "Sundae," which is a more complete alanine-like scanning method that can be used to better understand the binding and bioactivity of specific residues of a protein. We apply both of these methods to the interaction between an antibody and its antigen.


Subject(s)
Alanine , Antibodies , Epitopes
4.
Methods Mol Biol ; 2702: 587-601, 2023.
Article in English | MEDLINE | ID: mdl-37679640

ABSTRACT

Researchers can often successfully generate antibodies to predicted epitopes. Especially when the epitopes are on the surface of a protein or in a hydrophilic loop. But it is difficult to direct recombinant antibodies to bind either to- or near a specific amino acid on a protein or peptide. We have developed a unique immune-targeting strategy, that we call "Epivolve," that enables us to make site-specific antibodies (Abs). Epivolve technology leverages a highly immunogenic modified amino acid that acts as a "pseudo-hapten" immuno-target and takes advantage of Ab affinity maturation technologies to make high-affinity site-specific antibodies. Epivolve functions by the evolution of an Ab paratope to either synonymous or especially non-synonymous amino acid (aa) binding. Here we describe the use of Epivolve technology in phage display and the protocols for developing site-specific antibodies.


Subject(s)
Amino Acids , Antibodies , Binding Sites, Antibody , Cell Surface Display Techniques , Epitopes
5.
J Immunol Methods ; 521: 113540, 2023 10.
Article in English | MEDLINE | ID: mdl-37597727

ABSTRACT

Knowing that an antibody's sensitivity and specificity is accurate is crucial for reliable data collection. This certainty is especially difficult to achieve for antibodies (Abs) which bind post-translationally modified proteins. Here we describe two validation methods using surrogate proteins in western blot and ELISA. The first method, which we termed "MILKSHAKE" is a modified maltose binding protein, hence the name, that is enzymatically conjugated to a peptide from the chosen target which is either modified or non-modified at the residue of interest. The surety of the residue's modification status can be used to confirm Ab specificity to the target's post-translational modification (PTM). The second method uses a set of surrogate proteins, which we termed "Sundae". Sundae consists of a set of modified maltose binding proteins with a genetically encoded target sequence, each of which contains a single amino acid substitution at one position of interest. With Sundae, Abs can be evaluated for binding specificities to all twenty amino acids at a single position. Combining MILKSHAKE and Sundae methods, Ab specificity can be determined at a single-residue resolution. These data improve evaluation of commercially available Abs and identify off-target effects for Research-Use-Only and therapeutic Abs.


Subject(s)
Antibodies , Protein Processing, Post-Translational , Enzyme-Linked Immunosorbent Assay , Blotting, Western , Amino Acid Substitution
SELECTION OF CITATIONS
SEARCH DETAIL
...