Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Pharm ; 659: 124232, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38759740

ABSTRACT

Continuous Direct Compaction (CDC) has emerged as a promising route towards producing solid dosage forms while reducing material, development time and energy consumption. Understanding the response of powder processing unit operations, especially blenders, is crucial. There is a substantial body of work around how lubrication via batch blender operation affects tablet critical quality attributes such as hardness and tensile strength. But, aside from being batch operations, the design of these blenders is such that they operate with low-shear, low-intensity mixing at Froude number values significantly below 0.4 (Froude number Fr being the dimensionless ratio of inertial to gravitational forces). The present work explores the performance of a mini-blender which has a fundamentally different mode of operation (static vessel with rotating blades around a mixing shaft as opposed to rotating vessel with no mixing shaft). This difference allows a substantially wider operating range in terms of speed and shear (and Fr values). The present work evaluates how its performance compares to other blenders studied in the literature. Tablet compaction data from blends produced at various intensities and regimes of mixing in the mini-blender follow a common trajectory. Model equations from literature are suitably modified by inclusion of the Froude number Fr, but only for situations where the Froude number was sufficiently high (1 < Fr). The results suggest that although a similar lubrication extent plateau is eventually reached it is the intensity of mixing (i.e. captured using the Froude number as a surrogate) which is important for the lubrication dynamics in the mini-blender, next to the number of revolutions. The degree of fill or headspace, on the other hand, is only crucial to the performance of common batch blenders. Testing using alternative formulations shows the same common trend across mixing intensities, suggesting the validity of the approach to capture lubrication dynamics for this system.


Subject(s)
Drug Compounding , Powders , Tablets , Drug Compounding/methods , Powders/chemistry , Tensile Strength , Technology, Pharmaceutical/methods , Excipients/chemistry , Hardness , Chemistry, Pharmaceutical/methods
2.
Int J Pharm ; 558: 91-100, 2019 Mar 10.
Article in English | MEDLINE | ID: mdl-30597270

ABSTRACT

The forces experienced by the particles inside a twin screw granulator (TSG) are one of the most difficult parameters to measure quantitatively. However, it is possible to perform accurately this measurement through the use of dye containing calibrated microencapsulated sensors (CAMES) whose rupture is directly dependant on their experienced shear stress. The current study measures the extent of local stresses in the transformation from powder to granules at different channel fills during TSG processing. Channel fill has shown good potential as a design tool, however, its validity for predicting particle size distributions has yet to be demonstrated in an 11-mm TSG. The results of this study showed that the particles within the twin screw granulator experienced stresses in the range of 350-1000 kPa and this value was not linear with the specific mechanical energy applied by the granulator. It was observed that the majority of these stresses were produced by material transport processes rather than the granulation in itself. In addition it was determined that the torque required by the TSG increases exponentially after a certain channel fill a feature that requires to be considered in order to design safer, predictable and reliable granulation workspaces.


Subject(s)
Powders , Technology, Pharmaceutical , Cellulose , Excipients , Lactose , Particle Size , Physical Phenomena , Stress, Mechanical , Torque
3.
Int J Pharm ; 519(1-2): 230-239, 2017 Mar 15.
Article in English | MEDLINE | ID: mdl-28104406

ABSTRACT

It is important during powder granulation to obtain particles of a homogeneous size especially in critical situations such as pharmaceutical manufacture. To date, homogeneity of particle size distribution has been defined by the use of the d50 combined with the span of the particle size distribution, which has been found ineffective for polymodal particle size distributions. This work focuses on demonstrating the limitations of the span parameter to quantify homogeneity and proposes a novel improved metric based on the transformation of a typical particle size distribution curve into a homogeneity factor which can vary from 0 to 100%. The potential of this method as a characterisation tool has been demonstrated through its application to the production of granules using two different materials. The workspace of an 11mm twin screw granulator was defined for two common excipients (α-lactose monohydrate and microcrystalline cellulose). Homogeneity of the obtained granules varied dramatically from 0 to 95% in the same workspace, allowing identification of critical process parameters (e.g. feed rate, liquid/solid ratio, torque velocities). In addition it defined the operational conditions required to produce the most homogeneous product within the range 5µm-2.2mm from both materials.


Subject(s)
Powders/chemistry , Technology, Pharmaceutical/methods , Cellulose , Excipients/chemistry , Lactose/chemistry , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL