Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Genome Biol Evol ; 15(9)2023 09 04.
Article in English | MEDLINE | ID: mdl-37728212

ABSTRACT

Bats are exceptional among mammals for their powered flight, extended lifespans, and robust immune systems and therefore have been of particular interest in comparative genomics. Using the Oxford Nanopore Technologies long-read platform, we sequenced the genomes of two bat species with key phylogenetic positions, the Jamaican fruit bat (Artibeus jamaicensis) and the Mesoamerican mustached bat (Pteronotus mesoamericanus), and carried out a comprehensive comparative genomic analysis with a diverse collection of bats and other mammals. The high-quality, long-read genome assemblies revealed a contraction of interferon (IFN)-α at the immunity-related type I IFN locus in bats, resulting in a shift in relative IFN-ω and IFN-α copy numbers. Contradicting previous hypotheses of constitutive expression of IFN-α being a feature of the bat immune system, three bat species lost all IFN-α genes. This shift to IFN-ω could contribute to the increased viral tolerance that has made bats a common reservoir for viruses that can be transmitted to humans. Antiviral genes stimulated by type I IFNs also showed evidence of rapid evolution, including a lineage-specific duplication of IFN-induced transmembrane genes and positive selection in IFIT2. In addition, 33 tumor suppressors and 6 DNA-repair genes showed signs of positive selection, perhaps contributing to increased longevity and reduced cancer rates in bats. The robust immune systems of bats rely on both bat-wide and lineage-specific evolution in the immune gene repertoire, suggesting diverse immune strategies. Our study provides new genomic resources for bats and sheds new light on the extraordinary molecular evolution in this critically important group of mammals.


Subject(s)
Chiroptera , Neoplasms , Humans , Animals , Chiroptera/genetics , Phylogeny , Evolution, Molecular , Genomics , Longevity , Neoplasms/genetics , Neoplasms/veterinary
2.
Curr Biol ; 22(20): 1951-6, 2012 Oct 23.
Article in English | MEDLINE | ID: mdl-23022064

ABSTRACT

Hox genes are renowned for patterning animal development, with widespread roles in developmental gene regulation. Despite this importance, their evolutionary origin remains obscure, due to absence of Hox genes (and their evolutionary sisters, the ParaHox genes) from basal lineages and because the phylogenies of these genes are poorly resolved. This has led to debate about whether Hox and ParaHox genes originated coincidently with the origin of animals or instead evolved after the divergence of the earliest animal lineages. Here we use genomic synteny and Monte Carlo-based simulations to resolve Hox/ParaHox origins, our approach being independent of poorly resolved homeodomain phylogenies and better able to accommodate gene loss. We show Trox-2 of placozoans occupies a ParaHox locus. In addition, a separate locus sharing synteny and hence homology with human Hox loci exists in the placozoan genome, but without a Hox-like gene in it. We call this second locus a "ghost" Hox locus, because it is homologous to the human Hox loci, but does not itself contain a Hox gene. Extending our approach to sponges, we discover distinct ghost Hox and ParaHox loci. Thus, distinct Hox and ParaHox loci were present in the last common ancestor of all living animal lineages.


Subject(s)
Evolution, Molecular , Gene Expression Regulation, Developmental , Genes, Homeobox , Porifera/genetics , Sea Anemones/genetics , Animals , Humans , Monte Carlo Method , Phylogeny , Placozoa/genetics , Synteny
3.
Int J Evol Biol ; 2012: 846421, 2012.
Article in English | MEDLINE | ID: mdl-22919542

ABSTRACT

Duplication of genetic material is clearly a major route to genetic change, with consequences for both evolution and disease. A variety of forms and mechanisms of duplication are recognised, operating across the scales of a few base pairs upto entire genomes. With the ever-increasing amounts of gene and genome sequence data that are becoming available, our understanding of the extent of duplication is greatly improving, both in terms of the scales of duplication events as well as their rates of occurrence. An accurate understanding of these processes is vital if we are to properly understand important events in evolution as well as mechanisms operating at the level of genome organisation. Here we will focus on duplication in animal genomes and how the duplicated sequences are distributed, with the aim of maintaining a focus on principles of evolution and organisation that are most directly applicable to the shaping of our own genome.

SELECTION OF CITATIONS
SEARCH DETAIL