Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Waste Manag ; 164: 94-105, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37037101

ABSTRACT

It is estimated that 570 Mt of blade waste, whose management is complex and expensive, will be generated by 2030 in the European Union alone. Accordingly, alternative blade waste management techniques are being investigated to optimize material recovery. This study evaluates the correlation between the circular economy performance and the carbon footprint of seven end-of-life management solutions for wind turbine blades: repurposing, grinding, solvolysis, pyrolysis, co-processing in cement kilns, incineration with energy recovery and landfilling. The circular economy performance is analyzed through the calculation of the product circularity indicator, while the carbon footprint is determined through life cycle assessment, using the global warming indicator and considering the management of three blades from cradle-to-gate as functional unit. As the performance of solvolysis and pyrolysis recycling is expected to change in the future, a sensitivity analysis is also carried out to evaluate the variability of the results by changing their process efficiency and the quality of the recovered materials. The results indicate that blade recycling through solvolysis is the most circular (0.47-0.77) and low-carbon (225-503 CO2 eq.) solution overall. Blade repurposing, grinding and cement co-processing have a similar circularity (0.52-0.55) and a global warming impact ranging from 499 t CO2 eq. to 615 t CO2 eq. Although the circularity of pyrolysis is 59% (0.35) to 118% (0.48) greater than the circularity of incineration and landfilling (0.22), its carbon footprint can range from 566 t CO2 eq. to 744 t CO2 eq, which could be up to 19% higher than the carbon footprint of these linear EoL management alternatives (623 t CO2). Based on these findings, proposals for sustainable industrial innovation and methodological recommendations for the development of integrated circularity and sustainability studies are proposed.


Subject(s)
Carbon Footprint , Waste Management , Carbon Dioxide , Waste Management/methods , Incineration/methods , Carbon
2.
Sci Total Environ ; 648: 184-196, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30114589

ABSTRACT

The sustainability benefits of using solar cookers in developing countries have been analysed widely in the literature. However, the sustainability potential of solar cookers in developed economies has not been explored yet, which is the topic of this paper. Three types of solar cooker - box, panel and parabolic - were built as part of this research, using mostly (>70%) reused household materials. Their life cycle environmental and economic performance was analysed and compared to conventional microwaves. The results were first considered at the level of individual cookers and then scaled up to the levels of a city, region and country, considering a conservative (10%) uptake of solar cookers in substitution of microwaves. The contribution of home-made solar cookers to a circular economy and their social sustainability were also analysed. Spain was used as an illustrative example to demonstrate the potential sustainability benefits of using solar cookers in developed countries. The results suggest that, in comparison with microwaves, they could reduce annual life cycle costs by up to 40% and environmental impacts by up to 65%, including greenhouse gas emissions. At the national level, 42,600 t of CO2 eq. would be avoided annually while the consumption of primary energy would be reduced by 860 TJ. Furthermore, the electricity consumption would decrease by 67 GWh/yr and 4200 t/yr of household waste would be avoided. If solar cookers were built entirely by reusing household materials, up to €23.2 million could be saved per year. Finally, the development of craft activities to build and repair the cookers can help people to engage socially and reduce stress, thus enhancing their social wellbeing. It can also increase people's awareness of a more sustainable use of resources. Therefore, home-made solar cookers represent a promising opportunity to motivate behavioural changes towards a circular economy and sustainability in developed countries.

3.
Ann Work Expo Health ; 63(1): 107-123, 2019 01 07.
Article in English | MEDLINE | ID: mdl-30508067

ABSTRACT

Exposure to ceramic powders, which is frequent during handling operations, is known to cause adverse health effects. Finding proxy parameters to quantify exposure is useful for efficient and timely exposure assessments. Worker exposure during handling of five materials [a silica sand (SI1), three quartzes (Q1, Q2, and Q3), and a kaolin (K1)] with different particle shape (prismatic and platy) and sizes (3.4-120 µm) was assessed. Materials handling was simulated using a dry pendular mill under two different energy settings (low and high). Three repetitions of two kilos of material were carried out per material and energy conditions with a flow rate of 8-11 kg h-1. The performance of the dustiness index as a predictor of worker exposure was evaluated correlating material's dustiness indexes (with rotating drum and continuous drop) with exposure concentrations. Significant impacts on worker exposure in terms of inhalable and respirable mass fractions were detected for all materials. Mean inhalable mass concentrations during background were always lower than 40 µg m-3 whereas during material handling under high energy settings mean concentrations were 187, 373, 243, 156, and 430 µg m-3 for SI1, Q1, Q2, Q3, and K1, respectively. Impacts were not significant with regard to particle number concentration: background particle number concentrations ranged between 10 620 and 46 421 cm-3 while during handling under high energy settings they were 20 880 - 40 498 cm-3. Mean lung deposited surface area during background ranged between 27 and 101 µm2 cm-3 whereas it ranged between 22 and 42 µm2 cm-3 during materials handling. TEM images evidenced the presence of nanoparticles (≤100 nm) in the form of aggregates (300 nm-1 µm) in the worker area, and a slight reduction on mean particle size during handling was detected. Dustiness and exposure concentrations showed a high degree of correlation (R2 = 0.77-0.97) for the materials and operating conditions assessed, suggesting that dustiness could be considered a relevant predictor for workplace exposure. Nevertheless, the relationship between dustiness and exposure is complex and should be assessed for each process, taking into account not only material behaviour but also energy settings and workplace characteristics.


Subject(s)
Air Pollutants, Occupational/adverse effects , Dust/analysis , Industry , Inhalation Exposure/analysis , Occupational Exposure/analysis , Powders/analysis , Air Pollutants, Occupational/analysis , Environmental Monitoring/methods , Humans , Nanoparticles/analysis , Particle Size , Quartz/analysis , Silicon Dioxide/analysis
4.
Sci Total Environ ; 628-629: 979-989, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-30045586

ABSTRACT

Modern lifestyles have popularised the use of food containers, also known as food savers or Tupperware. However, their environmental impacts are currently unknown. To fill this knowledge gap, this paper presents the first comprehensive assessment of the life cycle environmental sustainability of reusable plastic and glass food savers and evaluates different options for improvements, focusing on European conditions. Taking a cradle-to-grave approach, the paper considers twelve environmental impacts, including global warming potential (GWP), acidification, eutrophication, human and ecotoxicities. The results suggest that, for example, the total GWP of using both types of food saver in the European Union (EU) amounts to 653ktCO2eq./year, equivalent to the annual greenhouse gas emissions of Bermuda. The use stage is the main contributor to the impacts (>40%), related to the washing of containers. Glass food savers have 12%-64% higher impacts than the plastic and should have up to 3.5 times greater lifespan to match the environmental footprint of plastic containers. Three improvement scenarios have been considered at the EU level for the year 2020: low-carbon electricity mix; implementation of the EU eco-design regulation for dishwashers; and adoption of more resource-efficient hand dishwashing techniques. The results suggest that the implementation of all three improvement options would reduce the impacts by 12%-47%. The option with the greatest potential for reducing the impacts (12%-27%) is improved hand dishwashing to reduce the amount of water, energy and detergents used. Thus, policy makers and manufacturers should devise strategies to raise awareness and guide consumers in adopting these techniques with the aim of reducing the environmental impacts associated with reusable food savers used by millions of people worldwide.


Subject(s)
Conservation of Natural Resources/methods , Food Packaging/methods , Europe , Global Warming , Waste Management/methods
5.
Sci Total Environ ; 625: 135-146, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29288999

ABSTRACT

Between 117 and 200 million kettles are used in the European Union (EU) every year. However, the full environmental impacts of kettles remain largely unknown. This paper presents a comprehensive life cycle assessment of conventional plastic and metallic kettles in comparison with eco-kettles. The results show that the use stage contributes 80% to the impacts. For this reason, the eco-kettle has over 30% lower environmental impacts due to a greater water efficiency and related lower energy consumption. These results have been extrapolated to the EU level to consider the implications for proposed eco-design regulations. For these purposes, the effects on the impacts of durability of kettles and improvements in their energy and water efficiency have been assessed as they have been identified as two key parameters in the proposed regulations. The results suggest that increasing the current average durability from 4.4 to seven years would reduce the impacts by less than 5%. Thus, improving durability is not a key issue for improving the environmental performance of kettles and does not justify the need for an eco-design regulation based exclusively on it. However, improvements in water and energy efficiency through eco-design can bring relevant environmental savings. Boiling the exact amount of water needed would reduce the impacts by around a third and using water temperature control by further 2%-5%. The study has also considered the effects of reducing significantly the number of kettles in use after the UK (large user of kettles) leaves the EU and reducing the excess water typically boiled by the consumer. Even under these circumstances, the environmental savings justify the development of a specific EU eco-design regulation for kettles. However, consumer engagement will be key to the implementation and achievement of the expected environmental benefits.

6.
Sci Total Environ ; 618: 487-499, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29145100

ABSTRACT

More than 130 million microwaves are affected by European Union (EU) legislation which is aimed at reducing the consumption of electricity in the standby mode ('Standby Regulation') and at more sustainable management of end-of-life electrical and electronic waste ('WEEE Directive'). While legislation focuses on these two life cycle stages, there is little information on the environmental impacts of the entire life cycle of microwaves. To address this gap, this paper presents a comprehensive life cycle assessment of microwaves and assesses the environmental implications of the Standby Regulation and the WEEE Directive at the EU level. The impacts are first considered at the level of individual appliances and then at the EU level, with the aim of evaluating the potential environmental implications of the full implementation of the above two EU regulations by 2020. The effects of the electricity decarbonisation and the expected increase in the number of microwaves in use have also been considered. The results suggest that implementation of the EU regulation by 2020 will reduce the environmental impacts considered by 4%-9% compared to the current situation. The majority of these reductions is due to the Standby Regulation, with the contribution of the WEEE Directive being small (~0.3%). However, the expected decarbonisation of electricity will result in much higher reductions (6%-24%) for most impact categories. The results also show that the materials used to manufacture the microwaves, the manufacturing process and end-of-life disposal are environmental hot-spots for several impacts, including depletion of abiotic elements. Therefore, efforts to reduce the environmental impacts of a future electricity mix should be combined with the development of specific eco-design regulations for microwaves that stipulate optimisation of resource consumption. Possible future trends, such as shorter lifetimes and limited availability of some resources, make the development of such product regulations more critical.

7.
Sci Total Environ ; 559: 192-203, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27060658

ABSTRACT

Energy efficiency of vacuum cleaners has been declining over the past decades while at the same time their number in Europe has been increasing. The European Commission has recently adopted an eco-design regulation to improve the environmental performance of vacuum cleaners. In addition to the existing directive on waste electrical and electronic equipment (WEEE), the regulation could potentially have significant effects on the environmental performance of vacuum cleaners. However, the scale of the effects is currently unknown, beyond scant information on greenhouse gas emissions. Thus, this paper considers for the first time life cycle environmental impacts of vacuum cleaners and the effects of the implementation of these regulations at the European level. The effects of electricity decarbonisation, product lifetime and end-of-life disposal options are also considered. The results suggest that the implementation of the eco-design regulation alone will reduce significantly the impacts from vacuum cleaners (37%-44%) by 2020 compared with current situation. If business as usual continued and the regulation was not implemented, the impacts would be 82%-109% higher by 2020 compared to the impacts with the implementation of the regulation. Improvements associated with the implementation of the WEEE directive will be much smaller (<1% in 2020). However, if the WEEE directive did not exist, then the impacts would be 2%-21% higher by 2020 relative to the impacts with the implementation of the directive. Further improvements in most impacts (6%-20%) could be achieved by decarbonising the electricity mix. Therefore, energy efficiency measures must be accompanied by appropriate actions to reduce the environmental impacts of electricity generation; otherwise, the benefits of improved energy efficiency could be limited. Moreover, because of expected lower life expectancy of vacuum cleaners and limited availability of some raw materials, the eco-design regulation should be broadened to reduce the impacts from raw materials, production and end-of-life management.

8.
J Colloid Interface Sci ; 453: 260-269, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-25989057

ABSTRACT

Anisotropic and branched gold nanoparticles have great potential in optical, chemical and biomedical applications. However their syntheses involve multi-step protocols and the use of cytotoxic agents. Here, we report a novel one-step method for the preparation of gold nanostructures using only Hantzsch 1,4-dihydropyridines as mild reducing agents. The substituent pattern of the dihydropyridine nucleus was closely related to the ease of formation, morphology and stability of the nanoparticles. We observed nanostructures such as spheres, rods, triangles, pentagons, hexagons, flowers, stars and amorphous. We focused mainly on the synthesis and characterization of well-defined gold nanostars, which were produced quickly at room temperature (25°C) in high yield and homogeneity. These nanostars presented an average size of 68 nm with mostly four or six tips. Based on our findings, we propose that the growth of the nanostars occurs in the (111) lattice plane due to a preferential deposition of the gold atoms in the early stages of particle formation. Furthermore, the nanostars were easily modified with peptides remaining stable for more than six months in their colloidal state and showing a better stability than unmodified nanostars in different conditions. We report a new approach using dihydropyridines for the straightforward synthesis of gold nanostructures with controlled shape, feasible for use in future applications.


Subject(s)
Dihydropyridines/chemistry , Gold/chemistry , Nanostructures/chemistry , Nanostructures/ultrastructure , Reducing Agents/chemistry , Nanotechnology/methods
9.
Micron ; 43(8): 910-5, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22455799

ABSTRACT

Precession electron diffraction (PED) allows for diffraction pattern collection under quasi-kinematical conditions. The combination of PED with fast electron diffraction acquisition and pattern matching software techniques is used for the high magnification ultra-fast mapping of variable crystal orientations and phases, similarly to what is achieved with the Electron Backscattered Diffraction technique in Scanning Electron Microscopes at lower magnifications and longer acquisition times. Here we report, for the first time, the application of this PED-based orientation mapping technique to both metallic and semiconducting nanowires.

SELECTION OF CITATIONS
SEARCH DETAIL
...