Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Neuroscience ; 518: 83-100, 2023 05 10.
Article in English | MEDLINE | ID: mdl-35007692

ABSTRACT

In Alzheimer's disease (AD), two mutually exclusive amino-terminal-dependent conformations have been reported to occur during the aggregation of Tau protein into neurofibrillary tangles (NFTs). An early conformation of full-length Tau, involving the bending of the amino terminus over the third repeated domain, is recognized by the Alz-50 antibody, followed by a second conformation recognized by Tau-66 antibody that depends on the folding of the proline-rich region over the third repeated domain in a molecule partially truncated at the amino- and carboxyl-termini. α-1-antichymotrypsin (ACT) is an acute phase serum glycoprotein that accumulates abnormally in the brain of AD patients, and since it is considered to promote the in vitro and in vivo aggregation of amyloid-ß, we here seek further evidence that ACT may also contribute to the abnormal aggregation of Tau in AD. By analyzing brain samples from a population of AD cases under immunofluorescence and high-resolution confocal microscopy, we demonstrate here the abundant expression of ACT in hippocampal neurons, visualized as a granular diffuse accumulation, frequently reaching the nuclear compartment. In a significant number of these neurons, intracellular NFTs composed of abnormally phosphorylated and truncated Tau at Asp421 were also observed to coexist in separated regions of the cytoplasm. However, we found strong colocalization between ACT and diffuse aggregates of Tau-66-positive granules, which was not observed with Alz-50 antibody. These results suggest that ACT may play a role during the development of Tau conformational changes facilitating its aggregation during the formation of the neurofibrillary pathology in AD.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/metabolism , tau Proteins/metabolism , Neurofibrillary Tangles/metabolism , Neurofibrillary Tangles/pathology , Neurons/metabolism , Brain/metabolism , Antibodies
2.
J Alzheimers Dis ; 87(2): 741-759, 2022.
Article in English | MEDLINE | ID: mdl-35367963

ABSTRACT

BACKGROUND: Amyloid-ß (Aß) fibrils induce cognitive impairment and neuronal loss, leading to onset of Alzheimer's disease (AD). The inhibition of Aß aggregation has been proposed as a therapeutic strategy for AD. Pristine C60 has shown the capacity to interact with the Aß peptide and interfere with fibril formation but induces significant toxic effects in vitro and in vivo. OBJECTIVE: To evaluate the potential of a series of C60 multiadducts to inhibit the Aß fibrillization. METHODS: A series of C60 multiadducts with four to six diethyl malonyl and their corresponding disodium-malonyl substituents were synthesized as individual isomers. Their potential on Aß fibrillization inhibition was evaluated in vitro, in cellulo, and silico. Antioxidant activity, acetylcholinesterase inhibition capacity, and toxicity were assessed in vitro. RESULTS: The multiadducts modulate Aß fibrils formation without inducing cell toxicity, and that the number and polarity of the substituents play a significant role in the adducts efficacy to modulate Aß aggregation. The molecular mechanism of fullerene-Aß interaction and modulation was identified. Furthermore, the fullerene derivatives exhibited antioxidant capacity and reduction of acetylcholinesterase activity. CONCLUSION: Multiadducts of C60 are novel multi-target-directed ligand molecules that could hold considerable promise as the starting point for the development of AD therapies.


Subject(s)
Alzheimer Disease , Fullerenes , Acetylcholinesterase , Alzheimer Disease/drug therapy , Amyloid/chemistry , Amyloid beta-Peptides , Antioxidants/pharmacology , Antioxidants/therapeutic use , Fullerenes/pharmacology , Humans , Peptide Fragments/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...