Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Rev Neurol ; 40(9): 518-22, 2005.
Article in Spanish | MEDLINE | ID: mdl-15898011

ABSTRACT

INTRODUCTION: Transplant is one of the alternatives available for the treatment of neurodegenerative diseases aimed at replacing the cells lost during the course of the disease. One promising source of cells for the development of transplants could be the mononucleate cells from bone marrow. AIMS. The purpose of this study was to study the capacity of bone marrow mononucleate cells to survive the transplant process, and to search for a method that enables tracking of these cells in vivo once they have been implanted. MATERIALS AND METHODS: Bone marrow mononucleate cells were extracted from the femur of rats by means of a Ficoll-Hypaque gradient. The cells under study were modified genetically with an adenovirus that expresses the PFV or which are marked with Hoechst dye. The marked cells were implanted in the striatum of rats with lesions caused by quinolinic acid. RESULTS: The viability of the genetically modified cells was low, whereas that of the cells marked with Hoechst dye was above 90%. The implanted cells survived the transplant at least a month and dispersed away from the site of entry towards the corpus callosum and cortex. CONCLUSIONS: We consider that the use of Hoechst dye offers more advantages for tracking these cells in vivo. Mononucleate cells have a number of characteristics that allow them to be included as candidate sources of cells for the treatment of neurodegenerative diseases.


Subject(s)
Bone Marrow Cells , Bone Marrow Transplantation , Cell Survival , Quinolinic Acid/toxicity , Visual Cortex , Animals , Benzimidazoles/metabolism , Bone Marrow Cells/cytology , Bone Marrow Cells/physiology , Cell Movement , Fluorescent Dyes/metabolism , Male , Neurodegenerative Diseases/therapy , Random Allocation , Rats , Rats, Sprague-Dawley , Visual Cortex/cytology , Visual Cortex/drug effects , Visual Cortex/pathology
SELECTION OF CITATIONS
SEARCH DETAIL