Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 11(22)2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36432781

ABSTRACT

Bauhinia forficata L. is a tree used in alternative medicine as an anti-diabetic agent, with little scientific information about its pharmacological properties. The hypoglycemic, antioxidant, and genoprotective activities of a methanolic extract of B. forficata leaves and stems combined were investigated in mice treated with streptozotocin (STZ). Secondary metabolites were determined by qualitative phytochemistry. In vitro antioxidant activity was determined by the DPPH method at four concentrations of the extract. The genoprotective activity was evaluated in 3 groups of mice: control, anthracene (10 mg/kg), and anthracene + B. forficata (500 mg/kg) and the presence of micronuclei in peripheral blood was measured for 2 weeks. To determine the hypoglycemic activity, the crude extract was prepared in a suspension and administered (500 mg/kg, i.g.) in previously diabetic mice with STZ (120 mg/kg, i.p.), measuring blood glucose levels every week as well as the animals' body weight for six weeks. The extract showed good antioxidant activity and caused a decrease in the number of micronuclei. The diabetic mice + B. forficata presented hypoglycemic effects in the third week of treatment, perhaps due to its secondary metabolites. Therefore, B. forficata is a candidate for continued use at the ethnomedical level as an adjuvant to allopathic therapy.

2.
Sci Total Environ ; 828: 154434, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35278555

ABSTRACT

The present study establishes a new procedure to characterize micro(nano)plastics (MNPs) and identify contaminants adhered to the plastic particles in aquatic environments by applying ultra-high resolution microscopy and spectroscopy techniques. Naturally fragmented microplastics (MPs) were collected from Manzanillo and Santiago Bays, Mexico and analyzed using: Confocal Laser Scanning Microscopy (CLSM), Fourier-Transform Infrared Spectroscopy (FTIR), µ-RAMAN, Atomic Force Microscopy (AFM), X-ray Photoelectron Spectroscopy (XPS) and Environmental Electron Scanning Microscopy (ESEM). The information obtained from each of these techniques was integrated to produce a comprehensive profile of each particle. Sample preparation was tested by applying three different rinses (unrinsed, distilled water and alcohol) to untreated MPs collected from Manzanillo Bay, finding that when large impurities are present an alcohol rinse makes it easier to examine the associated contaminants. Based on this emerging methodology, polyethylene and polypropylene MPs were identified with associated contaminants such as arsenic, cadmium, aluminum, and benzene. This study demonstrates the presence of pollutants that may be linked to MNPs in aquatic ecosystems and proposes an accurate relatively fast procedure for their analysis that does not require chemical extraction.


Subject(s)
Microplastics , Water Pollutants, Chemical , Ecosystem , Environmental Monitoring/methods , Plastics/analysis , Spectroscopy, Fourier Transform Infrared , Water Pollutants, Chemical/analysis
3.
Mar Pollut Bull ; 169: 112537, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34062323

ABSTRACT

Surface microplastics were sampled monthly in four tropical bays (Manzanillo, Santiago, Navidad and Cuastecomates) of the central Mexican Pacific during March 2017 to February 2018. Microplastic concentrations ranged between 0.01 and 1.05 particles/m2 with a median per bay ranging between 0.26 and 0.40 particles/m2. Raman spectroscopy registered polypropylene (40%), polyethylene (40%) and polyester (20%) polymers. Fibers dominated all samples, except for Manzanillo where fragments numerically dominated during the rainy season (Jun-Oct). Fiber concentration was not significantly different among bays or seasons, likely associated with continuous wastewater discharge. Fragment concentrations were significantly higher in Bahía Manzanillo and Santiago than the other two bays. Non-metric multidimensional scaling showed distinct distribution of Manzanillo samples (which has important port activities) as compared to Santiago, Navidad, Cuastecomates (where tourism economic activities predominate). This first direct comparison of sea surface microplastic concentration among four bays in Mexico provides a baseline to study impacts on marine zooplankton in this tropical ecosystem.


Subject(s)
Microplastics , Water Pollutants, Chemical , Bays , Ecosystem , Environmental Monitoring , Mexico , Plastics , Water Pollutants, Chemical/analysis
4.
RSC Adv ; 10(24): 14025-14032, 2020 Apr 06.
Article in English | MEDLINE | ID: mdl-35498454

ABSTRACT

In recent years, bioderived ionic liquids have gained attention as a new promising approach for lignocellulosic biomass pretreatment. In this work, Agave tequilana bagasse (ATB), an attractive bioenergy feedstock in Mexico, was pretreated with a bioderived ionic liquid (cholinium lysinate) for the first time. Optimization of the pretreatment conditions, in-depth biomass characterization and methane generation via anaerobic digestion are the main contributions of this work. The results indicated optimized pretreatment conditions of 124 °C, 205 min and 20% solids loading by applying a central composite design. The optimized pretreated ATB was able to produce an elevated sugar yield of 51.4 g total sugars per g ATB due to their high delignification (45.4%) and changes in their chemical linkages although an increase in cellulose crystallinity was found (0.51 untreated vs. 0.62 pretreated). Finally, the mass balance showed that 38.2 kg glucose and 13.1 kg xylose were converted into 12.5 kg of methane per 100 kg of untreated ATB, representing 86% of the theoretical methane yield and evidencing the potential of this biorefinery scheme.

5.
Bioresour Technol ; 275: 78-85, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30579104

ABSTRACT

Sequential 2k factorial and central composite designs were used to optimize Agave tequilana bagasse (ATB) pretreatment by using 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]). Reaction time, temperature and solids loading were the studied factors while sugar yield was the response variable. Results indicated that optimal conditions (119 °C, 142 min) using high solids loading (30%) were achieved at lower temperatures and reaction times than those previously reported in the literature. It was also revealed that solid recovery after pretreatment with [Emim][OAc] is a key factor. The increase in enzymatic digestibility of pretreated ATB was correlated to a decrease in crystallinity and lower lignin content as observed using microscopy techniques and weaken chemical bonds by Fourier transform infrared spectroscopy. Yields of glucose and xylose in the hydrolysate were 41.3, and 13.0 kg per 100 kg of untreated ATB, which are equivalent to glucan and xylan conversions of 75.9% and 82.9%, respectively.


Subject(s)
Agave/metabolism , Cellulose/metabolism , Glucose/biosynthesis , Imidazoles/metabolism , Xylose/biosynthesis , Hydrolysis , Lignin/chemistry , Temperature
6.
Bioresour Technol ; 225: 191-198, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27889478

ABSTRACT

Agave bagasse (AGB) has gained recognition as a drought-tolerant biofuel feedstock with high productivity in semiarid regions. A comparative analysis of ionic liquid (IL) and organosolv (OV) pretreatment technologies in AGB was performed using a sequential enzymatic saccharification and fermentation (SESF) strategy with cellulolytic enzymes and the ethanologenic Escherichia coli strain MS04. After pretreatment, 86% of xylan and 45% of lignin were removed from OV-AGB, whereas IL-AGB reduced lignin content by 28% and xylan by 50% when compared to the untreated biomass. High glucan (>90%) and xylan (>83%) conversion was obtained with both pretreated samples. During the fermentation stage (48h), 12.1 and 12.7kg of ethanol were produced per 100kg of untreated AGB for IL and OV, respectively. These comparative analyses showed the advantages of SESF using IL and OV in a biorefinery configuration where a better understanding of AGB recalcitrance is key for future applications.


Subject(s)
Agave , Biofuels , Cellulose , Ethanol , Ionic Liquids/chemistry , Agave/chemistry , Agave/metabolism , Cellulose/chemistry , Cellulose/metabolism , Ethanol/analysis , Ethanol/metabolism , Fermentation , Lignin/analysis , Lignin/metabolism
7.
Microsc Microanal ; 22(5): 1084-1097, 2016 10.
Article in English | MEDLINE | ID: mdl-27786154

ABSTRACT

The peroxyformic process is based on the action of a carboxylic acid (mainly formic acid) and the corresponding peroxyacid. The influences of processing time (60-180 min), formic acid concentration (80-95%), temperature (60-80°C), and hydrogen peroxide concentration (2-4%) on peroxyformic pulping of agave leaves were studied by surface response methodology using a face-centered factorial design. Empirical models were obtained for the prediction of yield, κ number (KN) and pulp viscosity as functions of the aforementioned variables. Mathematical optimization enabled us to select a set of operational variables that produced the best fractionation of the material with the following results: pulp yield (26.9%), KN (3.6), and pulp viscosity (777 mL/g). Furthermore, this work allowed the description and evaluation of changes to the agave fibers during the fractionation process using different microscopic and spectroscopic techniques, and provided a comprehensive and qualitative view of the phenomena occurring in the delignification of agave fibers. The use of confocal and scanning electron microscopy provided a detailed understanding of the microstructural changes to the lignin and cellulose in the fibers throughout the process, whereas Raman spectroscopy and X-ray diffraction analysis indicated that cellulose in the pulp after treatment was mainly of type I.

8.
Article in English | MEDLINE | ID: mdl-26442260

ABSTRACT

Utilization of lignocellulosic materials for the production of value-added chemicals or biofuels generally requires a pretreatment process to overcome the recalcitrance of the plant biomass for further enzymatic hydrolysis and fermentation stages. Two of the most employed pretreatment processes are the ones that used dilute acid (DA) and alkaline (AL) catalyst providing specific effects on the physicochemical structure of the biomass, such as high xylan and lignin removal for DA and AL, respectively. Another important effect that need to be studied is the use of a high solids pretreatment (≥15%) since offers many advantaged over lower solids loadings, including increased sugar and ethanol concentrations (in combination with a high solids saccharification), which will be reflected in lower capital costs; however, this data is currently limited. In this study, several variables, such as catalyst loading, retention time, and solids loading, were studied using response surface methodology (RSM) based on a factorial central composite design of DA and AL pretreatment on agave bagasse using a range of solids from 3 to 30% (w/w) to obtain optimal process conditions for each pretreatment. Subsequently enzymatic hydrolysis was performed using Novozymes Cellic CTec2 and HTec2 presented as total reducing sugar (TRS) yield. Pretreated biomass was characterized by wet-chemistry techniques and selected samples were analyzed by calorimetric techniques, and scanning electron/confocal fluorescent microscopy. RSM was also used to optimize the pretreatment conditions for maximum TRS yield. The optimum conditions were determined for AL pretreatment: 1.87% NaOH concentration, 50.3 min and 13.1% solids loading, whereas DA pretreatment: 2.1% acid concentration, 33.8 min and 8.5% solids loading.

9.
Article in English | MEDLINE | ID: mdl-25258642

ABSTRACT

Blueberry is a plant with a number of nutritional and biomedical capabilities. In the present study we initially evaluated the capacity of its juice (BJ) to inhibit the number of aberrant crypts (AC) induced with azoxymethane (AOM) in mouse. BJ was administered daily by the oral route to three groups of animals during four weeks (1.6, 4.1, and 15.0 µL/g), respectively, while AOM (10 mg/kg) was intraperitoneally injected to the mentioned groups, twice a week, in weeks two and three of the assay. We also included two control groups of mice, one administered distilled water and the other the high dose of BJ. A significant increase of AC was observed in the AOM treated animals, and a mean protection of 75.6% was determined with the two low doses of BJ tested; however, the high dose of the juice administered together with AOM increased the number of crypts more than four times the value observed in animals administered only AOM. Furthermore, we determined the antioxidant potential of BJ with an ex vivo DPPH assay and found a dose-dependent decrease with a mean of 19.5%. We also determined the DNA oxidation/antioxidation by identifying 8-hydroxy-2'-deoxyguanosine adducts and found a mean decrease of 44.3% with the BJ administration with respect to the level induced by AOM. Our results show a complex differential effect of BJ related to the tested doses, opening the need to further evaluate a number of factors so as to determine the possibility of a cocarcinogenic potential.

10.
Microsc Microanal ; 20(5): 1436-46, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25156546

ABSTRACT

Recently, the use of different types of natural fibers to produce paper and textiles from agave plants has been proposed. Agave atrovirens can be a good source of cellulose and lignin; nevertheless, the microstructural changes that happen during delignification have scarcely been studied. The aim of this work was to study the microstructural changes that occur during the delignification of agave fibers by means of microscopy techniques and image analysis. The fibers of A. atrovirens were obtained from leaves using convective drying, milling, and sieving. Fibers were processed using the Acetosolv pulping method at different concentrations of acetic acid; increasing acid concentration promoted higher levels of delignification, structural damage, and the breakdown of fiber clumps. Delignification followed by spectrometric analysis and microstructural studies were carried out by light, confocal laser scanning and scanning electron microscopy and showed that the delignification process follows three stages: initial, bulk, and residual. Microscopy techniques and image analysis were efficient tools for microstructural characterization during delignification of agave fibers, allowing quantitative evaluation of the process and the development of linear prediction models. The data obtained integrated numerical and microstructural information that could be valuable for the study of pulping of lignocellulosic materials.


Subject(s)
Agave/chemistry , Image Processing, Computer-Assisted/methods , Lignin/analysis , Lignin/isolation & purification , Microscopy/methods , Acetic Acid/metabolism , Plant Leaves/chemistry , Spectrum Analysis/methods
11.
Molecules ; 17(4): 4435-51, 2012 Apr 12.
Article in English | MEDLINE | ID: mdl-22499190

ABSTRACT

There are few reports that demonstrate the antigenotoxic potential of cranberries. Although the types of berry fruits consumed worldwide are many, this paper focuses on cranberries that are commonly consumed in Mexico (Vaccinium macrocarpon species). The purpose of the present study is to determine whether cranberry ethanolic extract (CEE) can prevent the DNA damage produced by benzo[a]pyrene (B[a]P) using an in vivo mouse peripheral blood micronucleus assay. The experimental groups were organized as follows: a negative control group (without treatment), a positive group treated with B[a]P (200 mg/kg), a group administered with 800 mg/kg of CEE, and three groups treated with B[a]P and CEE (200, 400, and 800 mg/kg) respectively. The CEE and benzo[a]pyrene were administered orally for a week, on a daily basis. During this period the body weight, the feed intake, and the determination of antigenotoxic potential were quantified. At the end of this period, we continued with the same determinations for one week more (recovery period) but anymore administration of the substances. The animals treated with B[a]P showed a weight increase after the first week of administration. The same phenomenon was observed in the lots combined with B[a]P and CEE (low and medium doses). The dose of 800 mg/kg of CEE showed similar values to the control group at the end of the treatment period. In the second part of the assay, when the substances were not administered, these experimental groups regained their normal weight. The dose of CEE (800 mg/kg) was not genotoxic nor cytotoxic. On the contrary, the B[a]P increases the frequency of micronucleated normochromatic erythrocytes (MNNE) and reduces the rate of polychromatic erythrocytes (PE) at the end of the treatment period. With respect to the combined lots, a significant decrease in the MN rate was observed from the sixth to the eighth day of treatment with the two high doses applied; the highest protection (60%) was obtained with 800 mg/kg of CEE. The same dose showed an anticytotoxic effect which corresponded to an improvement of 62.5% in relation to the animals administered with the B[a]P. In the second period, all groups reached values that have been seen in the control group animals. Our results suggest that the inhibition of clastogenicity of the cranberry ethanolic extract against B[a]P is related to the antioxidant capacity of the combination of phytochemicals present in its chemical composition.


Subject(s)
Benzo(a)pyrene/toxicity , DNA Damage/drug effects , Plant Extracts/pharmacology , Vaccinium macrocarpon/chemistry , Animals , Antioxidants/pharmacology , Dose-Response Relationship, Drug , Male , Mice , Micronuclei, Chromosome-Defective/chemically induced , Micronuclei, Chromosome-Defective/drug effects , Micronucleus Tests
12.
Molecules ; 16(10): 8319-31, 2011 Sep 29.
Article in English | MEDLINE | ID: mdl-21959302

ABSTRACT

It is well known that gadolinium chloride (GD) attenuates drug-induced hepatotoxicity by selectively inactivating Kupffer cells. In the present study the effect of GD in reference to cell cycle and postnecrotic liver regeneration induced by thioacetamide (TA) in rats was studied. Two months male rats, intraveously pretreated with a single dose of GD (0.1 mmol/Kg), were intraperitoneally injected with TA (6.6 mmol/Kg). Samples of blood and liver were obtained from rats at 0, 12, 24, 48, 72 and 96 h following TA intoxication. Parameters related to liver damage were determined in blood. In order to evaluate the mechanisms involved in the post-necrotic regenerative state, the levels of cyclin D and cyclin E as well as protein p27 and Proliferating Cell Nuclear Antigen (PCNA) were determined in liver extracts because of their roles in the control of cell cycle check-points. The results showed that GD significantly reduced the extent of necrosis. Noticeable changes were detected in the levels of cyclin D1, cyclin E, p27 and PCNA when compared to those induced by thioacetamide. Thus GD pre-treatment reduced TA-induced liver injury and accelerated the postnecrotic liver regeneration. These results demonstrate that Kupffer cells are involved in TA-induced liver and also in the postnecrotic proliferative liver states.


Subject(s)
Cell Cycle/drug effects , Chemical and Drug Induced Liver Injury/drug therapy , Gadolinium/pharmacology , Kupffer Cells/drug effects , Kupffer Cells/metabolism , Liver Regeneration/drug effects , Animals , Cell Cycle Checkpoints , Cell Proliferation/drug effects , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/physiopathology , Cyclin D/blood , Cyclin E/blood , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Necrosis/drug therapy , Proliferating Cell Nuclear Antigen/blood , Proliferating Cell Nuclear Antigen/metabolism , Rats , Rats, Wistar , Thioacetamide/toxicity
13.
Molecules ; 16(8): 6927-49, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21844842

ABSTRACT

After 6 months of operation a long-term biofilter was stopped for two weeks and then it was started up again for a second experimental period of almost 1.3 years, with high toluene loads and submitted to several physical and chemical treatments in order to remove excess biomass that could affect the reactor's performance due to clogging, whose main effect is a high pressure drop. Elimination capacity and removal efficiency were determined after each treatment. The methods applied were: filling with water and draining, backwashing, and air sparging. Different flows and temperatures (20, 30, 45 and 60 °C) were applied, either with distilled water or with different chemicals in aqueous solutions. Treatments with chemicals caused a decrease of the biofilter performance, requiring periods of 1 to 2 weeks to recover previous values. The results indicate that air sparging with pure distilled water as well as with solutions of NaOH (0.01% w/v) and NaOCl (0.01% w/v) were the treatments that removed more biomass, working either at 20, 30 or 45 °C and at relatively low flow rates (below 320 L h(-1)), but with a high biodegradation inhibition after the treatments. Dry biomass (g VS) content was determined at three different heights of the biofilter in order to carry out each experiment under the same conditions. The same amount of dry biomass when applying a treatment was established so it could be considered that the biofilm conditions were identical. Wet biomass was used as a control of the biofilter's water content during treatments. Several batch assays were performed to support and quantify the observed inhibitory effects of the different chemicals and temperatures applied.


Subject(s)
Air Pollution/prevention & control , Biodegradation, Environmental , Biotechnology/methods , Filtration/methods , Biomass , Bioreactors , Biotechnology/instrumentation , Distillation , Filtration/instrumentation , Hydrogen-Ion Concentration , Kinetics , Microbial Consortia , Pressure , Sodium Hydroxide/chemistry , Sodium Hypochlorite/chemistry , Temperature , Toluene/chemistry , Toluene/metabolism , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/metabolism , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...