Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Cancer Res ; 11(11): 5299-5318, 2021.
Article in English | MEDLINE | ID: mdl-34873462

ABSTRACT

Prostate cancer (PrCa) is the second most common malignancy in men. More than 50% of advanced prostate cancers display the TMPRSS2-ERG fusion. Despite extensive cancer genome/transcriptome data, little is known about the impact of mutations and altered transcription on regulatory networks in the PrCa of individual patients. Using patient-matched normal and tumor samples, we established somatic variations and differential transcriptome profiles of primary ERG-positive prostate cancers. Integration of protein-protein interaction and gene-regulatory network databases defined highly diverse patient-specific network alterations. Different components of a given regulatory pathway were altered by novel and known mutations and/or aberrant gene expression, including deregulated ERG targets, and were validated by using a novel in silico methodology. Consequently, different sets of pathways were altered in each individual PrCa. In a given PrCa, several deregulated pathways share common factors, predicting synergistic effects on cancer progression. Our integrated analysis provides a paradigm to identify druggable key deregulated factors within regulatory networks to guide personalized therapies.

2.
Biol Cell ; 113(6): 272-280, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33554340

ABSTRACT

Cancer is a multi-step disease where an initial tumour progresses through critical steps shaping, in most cases, life-threatening secondary foci called metastases. The oncogenic cascade involves genetic, epigenetic, signalling pathways, intracellular trafficking and/or metabolic alterations within cancer cells. In addition, pre-malignant and malignant cells orchestrate complex and dynamic interactions with non-malignant cells and acellular matricial components or secreted factors within the tumour microenvironment that is instrumental in the progression of the disease. As our aptitude to effectively treat cancer mostly depends on our ability to decipher, properly diagnose and impede cancer progression and metastasis formation, full characterisation of molecular complexes and cellular processes at play along the metastasis cascade is crucial. For many years, the scientific community lacked adapted imaging and molecular technologies to accurately dissect, at the highest resolution possible, tumour and stromal cells behaviour within their natural microenvironment. In that context, the NANOTUMOR consortium is a French national multi-disciplinary workforce which aims at a providing a multi-scale characterisation of the oncogenic cascade, from the atomic level to the dynamic organisation of the cell in response to genetic mutations, environmental changes or epigenetic modifications. Ultimately, this program aims at identifying new therapeutic targets using innovative drug design.


Subject(s)
Databases as Topic , Neoplasms/pathology , Humans
3.
iScience ; 23(6): 101141, 2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32450513

ABSTRACT

Epigenetic deregulation of gene transcription is central to cancer cell plasticity and malignant progression but remains poorly understood. We found that the uncharacterized epigenetic factor chromodomain on Y-like 2 (CDYL2) is commonly over-expressed in breast cancer, and that high CDYL2 levels correlate with poor prognosis. Supporting a functional role for CDYL2 in malignancy, it positively regulated breast cancer cell migration, invasion, stem-like phenotypes, and epithelial-to-mesenchymal transition. CDYL2 regulation of these plasticity-associated processes depended on signaling via p65/NF-κB and STAT3. This, in turn, was downstream of CDYL2 regulation of MIR124 gene transcription. CDYL2 co-immunoprecipitated with G9a/EHMT2 and GLP/EHMT1 and regulated the chromatin enrichment of G9a and EZH2 at MIR124 genes. We propose that CDYL2 contributes to poor prognosis in breast cancer by recruiting G9a and EZH2 to epigenetically repress MIR124 genes, thereby promoting NF-κB and STAT3 signaling, as well as downstream cancer cell plasticity and malignant progression.

4.
Nature ; 553(7686): 96-100, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29258294

ABSTRACT

Cellular senescence is a stress-responsive cell-cycle arrest program that terminates the further expansion of (pre-)malignant cells. Key signalling components of the senescence machinery, such as p16INK4a, p21CIP1 and p53, as well as trimethylation of lysine 9 at histone H3 (H3K9me3), also operate as critical regulators of stem-cell functions (which are collectively termed 'stemness'). In cancer cells, a gain of stemness may have profound implications for tumour aggressiveness and clinical outcome. Here we investigated whether chemotherapy-induced senescence could change stem-cell-related properties of malignant cells. Gene expression and functional analyses comparing senescent and non-senescent B-cell lymphomas from Eµ-Myc transgenic mice revealed substantial upregulation of an adult tissue stem-cell signature, activated Wnt signalling, and distinct stem-cell markers in senescence. Using genetically switchable models of senescence targeting H3K9me3 or p53 to mimic spontaneous escape from the arrested condition, we found that cells released from senescence re-entered the cell cycle with strongly enhanced and Wnt-dependent clonogenic growth potential compared to virtually identical populations that had been equally exposed to chemotherapy but had never been senescent. In vivo, these previously senescent cells presented with a much higher tumour initiation potential. Notably, the temporary enforcement of senescence in p53-regulatable models of acute lymphoblastic leukaemia and acute myeloid leukaemia was found to reprogram non-stem bulk leukaemia cells into self-renewing, leukaemia-initiating stem cells. Our data, which are further supported by consistent results in human cancer cell lines and primary samples of human haematological malignancies, reveal that senescence-associated stemness is an unexpected, cell-autonomous feature that exerts its detrimental, highly aggressive growth potential upon escape from cell-cycle blockade, and is enriched in relapse tumours. These findings have profound implications for cancer therapy, and provide new mechanistic insights into the plasticity of cancer cells.


Subject(s)
Cellular Reprogramming , Cellular Senescence , Lymphoma, B-Cell/pathology , Neoplastic Stem Cells/pathology , Animals , Biomarkers/metabolism , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cellular Reprogramming/drug effects , Cellular Senescence/drug effects , Cellular Senescence/genetics , Clone Cells/drug effects , Clone Cells/pathology , Female , Humans , Lymphoma, B-Cell/drug therapy , Lymphoma, B-Cell/genetics , Male , Mice , Mice, Transgenic , Neoplastic Stem Cells/drug effects , Phenotype , Wnt Signaling Pathway/drug effects
5.
Aging Cell ; 13(3): 487-96, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24589226

ABSTRACT

Senescent cells secrete a plethora of factors with potent paracrine signaling capacity. Strikingly, senescence, which acts as defense against cell transformation, exerts pro-tumorigenic activities through its secretome by promoting tumor-specific features, such as cellular proliferation, epithelial-mesenchymal transition and invasiveness. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has the unique activity of activating cell death exclusively in tumor cells. Given that the senescence-associated secretome (SAS) supports cell transformation, we asked whether SAS factor(s) would establish a program required for the acquisition of TRAIL sensitivity. We found that conditioned media from several types of senescent cells (CMS) efficiently sensitized pretransformed cells to TRAIL, while the same was not observed with normal or immortalized cells. Dynamic transcription profiling of CMS-exposed pretransformed cells indicated a paracrine autoregulatory loop of SAS factors and a dominant role of CMS-induced MYC. Sensitization to TRAIL coincided with and depended on MYC upregulation and massive changes in gene regulation. Senescent cell-induced MYC silenced its target gene CFLAR, encoding the apoptosis inhibitor FLIPL , thus leading to the acquisition of TRAIL sensitivity. Altogether, our results reveal that senescent cell-secreted factors exert a TRAIL-sensitizing effect on pretransformed cells by modulating the expression of MYC and CFLAR. Notably, CMS dose-dependent sensitization to TRAIL was observed with TRAIL-insensitive cancer cells and confirmed in co-culture experiments. Dissection and characterization of TRAIL-sensitizing CMS factors and the associated signaling pathway(s) will not only provide a mechanistic insight into the acquisition of TRAIL sensitivity but may lead to novel concepts for apoptogenic therapies of premalignant and TRAIL-resistant tumors.


Subject(s)
Apoptosis/drug effects , Cell Transformation, Neoplastic/drug effects , Proto-Oncogene Proteins c-myc/biosynthesis , TNF-Related Apoptosis-Inducing Ligand/pharmacology , Amino Acid Sequence , CASP8 and FADD-Like Apoptosis Regulating Protein/biosynthesis , CASP8 and FADD-Like Apoptosis Regulating Protein/genetics , Cell Line , Cell Transformation, Neoplastic/pathology , Cellular Senescence/drug effects , Cellular Senescence/physiology , Culture Media, Conditioned , Fibroblasts/cytology , Fibroblasts/drug effects , Gene Expression Regulation , Humans , Molecular Sequence Data , Proto-Oncogene Proteins c-myc/genetics , TNF-Related Apoptosis-Inducing Ligand/antagonists & inhibitors
6.
Nucleic Acids Res ; 40(4): e30, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22156059

ABSTRACT

Chromatin immunoprecipitation coupled with massive parallel sequencing (ChIP-seq) is increasingly used to map protein-chromatin interactions at global scale. The comparison of ChIP-seq profiles for RNA polymerase II (PolII) established in different biological contexts, such as specific developmental stages or specific time-points during cell differentiation, provides not only information about the presence/accumulation of PolII at transcription start sites (TSSs) but also about functional features of transcription, including PolII stalling, pausing and transcript elongation. However, annotation and normalization tools for comparative studies of multiple samples are currently missing. Here, we describe the R-package POLYPHEMUS, which integrates TSS annotation with PolII enrichment over TSSs and coding regions, and normalizes signal intensity profiles. Thereby POLYPHEMUS facilitates to extract information about global PolII action to reveal changes in the functional state of genes. We validated POLYPHEMUS using a kinetic study on retinoic acid-induced differentiation and a publicly available data set from a comparative PolII ChIP-seq profiling in Caenorhabditis elegans. We demonstrate that POLYPHEMUS corrects the data sets by normalizing for technical variation between samples and reveal the potential of the algorithm in comparing multiple data sets to infer features of transcription regulation from dynamic PolII binding profiles.


Subject(s)
Chromatin Immunoprecipitation , High-Throughput Nucleotide Sequencing , RNA Polymerase II/metabolism , Software , Algorithms , Animals , Binding Sites , Caenorhabditis elegans/embryology , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Cell Differentiation , Chromatin/genetics , Data Interpretation, Statistical , Sequence Analysis, DNA , Transcription Initiation Site
7.
Mol Syst Biol ; 7: 538, 2011 Oct 11.
Article in English | MEDLINE | ID: mdl-21988834

ABSTRACT

Retinoic acid (RA) triggers physiological processes by activating heterodimeric transcription factors (TFs) comprising retinoic acid receptor (RARα, ß, γ) and retinoid X receptor (RXRα, ß, γ). How a single signal induces highly complex temporally controlled networks that ultimately orchestrate physiological processes is unclear. Using an RA-inducible differentiation model, we defined the temporal changes in the genome-wide binding patterns of RARγ and RXRα and correlated them with transcription regulation. Unexpectedly, both receptors displayed a highly dynamic binding, with different RXRα heterodimers targeting identical loci. Comparison of RARγ and RXRα co-binding at RA-regulated genes identified putative RXRα-RARγ target genes that were validated with subtype-selective agonists. Gene-regulatory decisions during differentiation were inferred from TF-target gene information and temporal gene expression. This analysis revealed six distinct co-expression paths of which RXRα-RARγ is associated with transcription activation, while Sox2 and Egr1 were predicted to regulate repression. Finally, RXRα-RARγ regulatory networks were reconstructed through integration of functional co-citations. Our analysis provides a dynamic view of RA signalling during cell differentiation, reveals RAR heterodimer dynamics and promiscuity, and predicts decisions that diversify the RA signal into distinct gene-regulatory programs.


Subject(s)
Cell Differentiation/genetics , Embryonic Stem Cells/metabolism , Gene Expression Regulation/drug effects , Gene Regulatory Networks , Genomics/methods , Receptors, Retinoic Acid/metabolism , Retinoid X Receptor alpha/metabolism , Signal Transduction/drug effects , Tretinoin/pharmacology , Amino Acid Sequence , Animals , Cell Differentiation/drug effects , Chromatin/genetics , Chromatin/metabolism , Chromatin Immunoprecipitation , Early Growth Response Protein 1/genetics , Early Growth Response Protein 1/metabolism , Embryonic Stem Cells/cytology , Gene Expression Profiling , Mice , Molecular Sequence Data , Protein Binding/genetics , Receptor Cross-Talk/drug effects , Receptors, Retinoic Acid/genetics , Retinoid X Receptor alpha/genetics , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Signal Transduction/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic , Retinoic Acid Receptor gamma
SELECTION OF CITATIONS
SEARCH DETAIL
...